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Abstract

Analytical results have shown that adaptive filtering can be a powerful tool for the rejection of narrowband

interference in a direct sequence spread spectrum receiver. However, the complexity of adaptive filtering hardware

has hindered the experimental validation of these results. This thesis describes a unique adaptive filter architecture

for implementing the Widrow-Hoff Least-Mean-Square (LMS) algorithm using two state-of-the-art Acoustic Charge

Transport (ACT) Programmable Transversal Filters (PTFs). Signal-to-noise ratio improvement measurements

demonstrate the effectiveness of the adaptive filter for suppressing single- and dual-tone jammers at jammer-to-signal

ratios (JSRs) of up to 30 dB. It is shown that the ACT adaptive interference rejection system can consistently

produce 55 dB notch depths with 3-dB bandwidths as low as 300 kHz with minimal degradation to the spread

spectrum signal. It is also shown that the adaptive system can eliminate single tone jammers at any frequency within

the spread spectrum bandwidth at any of 10, 20, or 30 dB JSRs within 10-15 iterations of the adaptive algorithm.

The only drawback with the adaptive system as tested is the amount of time taken to perform an iteration because

of the requirement to update the PTF tap weights sequentially. Suggestions are given as to how this particular

parameter of the adaptive interference system could be optimized.
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EVALUATION OF AN

ACOUSTIC CHARGE TRANSPORT (ACT) DEVICE

FOR ADAPTIVE INTERFERENCE SUPPRESSION IN

SPREAD SPECTRUM COMMUNICATIONS SYSTEMS

L Introduction

This chapter outlines a procedure for evaluating the performance of an Acoustic Charge Transport

(ACT) technology implementation of a Programmable Transversal Filter (PTF). The chapter begins by

introducing the problem electromagnetic conflict poses in disrupting secure and reliable communications and

the role of PTFs in counteracting the interference threat. The objective, scope, and approach are then presented

along with a listing of the necessary resources, both hardware and software, to accomplish the thesis objective.

Finally, the chapter concludes with the organizational layout for the final thesis document.

1.1 Background

The purpose of any communication system is to transmit information or data with an acceptable

probability of bit error or signal-to-noise ratio. In an ideal environment, a channel bandwidth approximately

equal to the data rate is sufficient to transmit binary coded information. However, in a noisy, crowded, or

hostile environment, a number of techniques may be implemented in order to increase the security and antijam

characteristics of a communication system: power control techniques, spatial discrimination techniques, spread

spectrum modulation, and interference suppression.

Increasing the power level of a communications transmitter, by either increasing the peak power or

extending the duty cycle, to assure an inherent antijam capability (otherwise known as brute-force tanwsmission),

is a detriment in light of today's stealthy platforms. The need to hide one's signal is vital. What is preferable
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is the technique of adaptive power control, in which the transmitter output power is automatically adjusted to

the minimum signal-to-noise ratio required to maintain effective communications [1]. This technique provides

jam resistance without degrading host low observable characteristics.

Spatial discrimination techniques include adaptive null steering antennas and high-gain directional

antennas. Together, they mean placing nulls of the receivers antenna gain pattern in the direction of enemy

jammers in order to avoid front end saturation of the receiver, and increasing the gain in the direction of the

desired signal.

Spread spectrum communication is a technique whereby the bandwidth of the transmitted waveform

is intentionally made wider (typically much wider) than is necessary to transmit the information over the

channel. The advantage of spread spectrum is that it makes the system less sensitive to various interfering

signals. These interfering signals might arise from intentional jamming, multipath, or multiple users coexisting

on the same bandwidth, for example. A conventional communication system would typically not be able to

function properly in the presence of such interference; hence, the need for spread spectrum [2].

Two common spread spectrum schemes are direct sequence (DS) and frequency hopping (FH). Direct

sequence spreading, the focus of this research, is achieved by modulo-2 addition of a binary message sequence

and a higher rate pseudorandom binary sequence. The result is a sequence at the pseudorandom sequence rate

which is used to phase modulate a sinusoidal carrier signal. This technique spreads the energy of the signal over

a large bandwidth so that it could be hidden in the noise levels of unintended receivers. Hence the signals have

a low-probability-of-intercept while increasing the resistance to interference and jamming. Frequency hopping

consists of hopping a narrowband signal, via frequency-shift keying using a large set of frequencies, over a large

bandwidth with a pseudorandom pattern.

The inherent processing gain of a spread spectrum system will, in many cases, provide the system with

a sufficient degree of interference rejection capability. However, at times the interfering signal is powerful

enough so that even with the advantage that the system obtains by spreading the spectrum, communication

becomes effectively impossible. In some of these cases, the interference immunity can be improved significantly
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by using signal processing techniques which complement the spread spectrum modulation. If the interference

is relatively narrowband compared with the bandwidth of the spread spectrum waveform, then the technique of

interference suppression by the use of notch filters often results in a large improvement in system

performance [3].

The spectral filtering techniques mentioned above most often make use of tapped delay line (or

transversal) filter structures to implement the programmable notch filters. These PTFs can be implemented in

a variety of device technologies such as surface acoustic wave (SAW) devices, charge-coupled devices (CCDs),

high-speed digital signal processing (DSP) techniques (via VLSI or VHSIC circuits), or with a relatively new

device technology called acoustic charge transport (ACT).

1.2 Objective

The otjective of this research is to examine the effectiveness of using the ACT PTF for adaptive

interference suppression of narrowband jammers in a direct sequence spread spectrum system. It is desirable

to achieve a 1 MHz (or less) 3-dB notch bandwidth with 40-50 dB of suppression such that an acceptable signal-

to-noise ratio (and hence, probability of bit error) is maintained in the reception of the transmitted messages.

Also, the convergence of the adaptive filter should occur within the fewest number of iterations, consistent with

application in real-time systems.

1.3 Scope and Assumptions

Since the single-tone or continuous-wave (CW) jammer is, perhaps, the easiest jamming signal to

generate and is relatively effective in disrupting direct sequence signals, this study evaluates the capability of

the ACT PTF for adaptive interference suppression of narrowband (tone) jammers. The following jamming

signals scenarios are the focus of this report in their order of examination:

(i) fixed single tone

(ii) fixed multiple tones
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(iii) narrowband Gaussian noise or narrowband FM signals

(iv) swept tone

(v) fixed tone plus swept tone

Of particular interest is the effectiveness of the ACT suppression filter in adapting to a CW jammer

located at the center frequency of the direct sequence signal, since this is where the jammer achieves maximum

effectiveness in disrupting communications. This is because at the center frequency, the maximum jammer

energy passes through the receiver's reference bandwidth.

The performance criteria for this report will focus primarily on the qualitative signal-to-noise ratios

instead of the quantitative probability of bit error (Pb) analysis due to the complexity of the system setup

necessary to achieve the Pb results. Therefore, signal correlation, code despreading, and data detection will not

be performed.

Crucial to the effectiveness of the interference suppression in the spread spectrum system is the adaptive

algorithm used to update the tap weights in the PTF. This test environment will examine the se of the

Widrow-Hoff Least-Mean-Square (LMS) adaptive algorithm and the linear random search algorithm. The LMS

algorithm is the best known and most easily implemented algorithm in a class of algorithms which implement

an iterative solution to the Wiener-Hopf equation without making use of any apriori statistical information about

the received signal. (The Wiener-Hopf equation determines the optimal tap weight settings for the particular

PT function.) The random search algorithm is easily implemented when access to the input signal samples is

not possible, and is, therefore, useful at times when the LMS algorithm is not.

1.4 Approach

The approach in this thesis is to first perform hardware benchtesting of the proposed setup and compare

the results with the expected theoretical results. The literature is replete with data revealing the desired results.

1-4



To ascertain how well the ACT PTF performs in suppressing the narrowband jamming signals listed in Section

1.3, the following system and adaptive interference suppression (AIS) filter measurements are recorded:

"* pre-detection jammer-to-signal (JSR) ratio

" post-detection JSR

" AIS filter convergence rate or number of iterations

" AIS filter frequency response after adaptation

1.5 Resources

0 ACT PTF from Electronic Decisions Inc (EDI), Div. of Comlinear Corp.(2 ea.) - (127 tap, 6-bit

tap weight resolution) with 2 ea. SMA connectors and RS-232C 25-pin parallel daisy-chain cable;

* W.A.V.E. System Software from EDI (along with 386/486 IBM PC with 4 Mbytes RAM and

coprocessor): Used to implement adaptive algorithm for tap weight vector updates;

• A/D Converter Card w/BNC connection: 12-bit resolution, Intelligent Instruments/Burr Brown PCI-

20001C family of carrier boards; card ROM switch (hex CD40));

a LRS-100 Spread Spectrum Generator: Generates up to 20 Mcps DS/SS signal with a maximum 40

dB R!Rb ratio (processing gain); maximum R16 length m-sequence; BPSK/QPSK/Gold/Burst signal format

options;

• Marconi 2022 Signal Generators (3 ea.): Two were used to generate tone jamming signals; one to

generate the carrier for the DS/SS signal;

"• Power Supplies: +12V/-5V (ACT-PTFs and adaptive module), and ± 5V (AID converter/LPF patch);

"* HP 70000/HP 70206A Spectrum Analysis System: Used to view frequency spectra at all points in

the system;

a HP 8753B Network Analyzer/lHP 85046A S-Parameter Test Set: Used to develop frequency

responses of ACT PTF after aiaptation;

N Tektronix 7854 Oscilloscope: Used to verify PN sequence and to view JSR in time-domain;
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E Tektronix 7854 Oscilloscope: Used to verify PN sequence and to view JSR in time-domain;

* HP 7470A/7450A Plotters: Used to plot frequency spectra from HP 70206A Spectrum Analyzer;

* HP 10514A Mixer (.2-500 MHz): Used to suppress-carrier modulate the BPSK baseband signal;

* HP 355 C/D VHF Attenuators: Used to adjust the JSR conveniently between 10, 20, 30 dB;

* Various attenuators: Used to balance the jamming and DS/SS signals to allow for the adjustable

JSRs;

* MCL 15542 Splitter/Combiners (4 ea.);

* 90 MHz Lowpass Filters (LPFs) (2 ea.).

1.6 Sequence of Presentation

Chapter 2 presents an overview of prior work accomplished in interference rejection techniques as

applied to direct sequence spread spectrum systems. This overview encompasses progress made in various

filtering techniques and adaptive algorithms, leading up to and providing a basis for this research. Chapter 3

contains the theoretical background necessary to grasp an understanding of the complexity of the problem. It

begins with a brief overview of direct sequence systems and the properties of the pseudorandom codes that make

it possible. This is followed ',y the fundamentals of adaptive algorithms, focusing primarily on the least-mean-

square (LMS) and linear random search (LRS) algorithms. Chapter 4 is devoted to the characteristics of the

programmable transversal filter, especially the qualities of the ACT PTF since this technology is the focus of

the thesis. Chapter 5 presents the specific testing arrangement, procedures, and results for the adaptive

interference system. Chapter 6 summarizes the results of this thesis and provides recommendations for further

study in this area of research.
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I1. Interference Suppression Techniques:

A Literature Review

This chapter examines the published literature on the interference rejection problem as it relates to

direct sequence spread spectrum communications. Although the particular implementation of an adaptive

interference suppressor in this study focuses on the use of the acoustic charge transport (ACT) programmable

transversal filter (PTF), the literature contains only work with other device types. Therefore, they will be

examined for purposes of background into the interference rejection problem and for comparisons with other

device implementations. Since most of the previous researchers have used the least-mean-square (LMS)

adaptive algorithm, articles which implemented this algorithm will be favored; however, other filtering

techniques and algorithms will be presented as well.

The application of adaptive algorithms to mitigate signal processing chores has been prevalent since

the early-1960's when Bernard Widrow and associates applied them to antenna arrays [231. Specific

implementation of adaptive algorithms for interference suppression in direct sequence spread spectrum systems

has been investigated since the mid- to iate-1970's.

Hsu and Giordano [41 have laid down the foundational work in interference suppression in spread

spectrum systems. They were the first to determine that due to the nearly flat spectral characteristics of the

pseudorandom sequence (uncorrelated in the short term--meaning the sequence shifted by one bit with respect

to itself is uncofrelated), a highly-correlated narrow-band interference signal can be filtered out by using linear

prediction techniques. Their digital whitening techniques were implemented using a transversal filter whose

cot. ficients were selected by either a Wiener algorithm or a maximum entropy algorithm, as seen in Figure 1.

They found that for strong narrowband interference in a poor signal-to-noise ratio (SNR) condition, significant

performance gains from digital whitening could be accomplished. In their study, the performance of the

interference suppression was measured in terms of SNR improvement with whitening compared to the SNR

without whitening. In their experiments, all signals were represented at baseband in terms of their low-pass

equivalents. The interference was modeled as a sum of fixed amplitude and fixed frequency tones with random
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Figure 1 Hsu and Giordano's SS communications system model with interference suppression subsystems.

phases, as well as narrowband Gaussian interference. Both of their receiver models performed coherent detection

and were assumed to be perfectly synchronized, with the digital whitening being done before correlation.

The Wiener filter was implemented recursively using a least-mean-square error criterion and a form

of Levinson's algo-ithm in the actual computation. The maximum entropy whitening filter was based on an

algorithm developed by Burg. The algorithm used a procedure for determining the prediction error filter

coefficients directly from known uata samples. An important feature of the Burg procedure is that no a priori

estimate of the autocorrelation function is reurid.

Hsu and Giordano also established the theoretical SNR improvement calculations. The bandwidth of

the interference for their experimentation was roughly one fifth of the bandwidth of the spread spectrum signal.

They used either 10 or 100 tones uniformly spaced within the SS bandwidth.
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Ketchum and Proakis [5] further improved the results of Hsu and Giordano by combining the

interference rejection filter with its matched filter, resulting in an overall linear filter having a linear phase

characterisuc. In essence, the authors evaluated the effectiveness of the interference suppression as dome in [4],

but they further defined the performance of the SS receiver as measured in terms of the probability of enor.

which was obtained by applying a Gaussian assumption on the total residual noise and interference followed

by Monte Carlo simulation. Figure 2 contains their probability of bit error results for a 4-tap filter with the

matched filter and without the matched filter.

IGO a PRiOC18i"a SAM. If 16
O POM[CSIM "no: N

a "WIEwmO Uaps i awGI.
4 PAM CISSW O 60~i UA WllO E ~ • 1

A@cess. GAN: U

10-111

10-

10"4• 10-4

10 -510 0 100 10" 0.--5J. t l

o0 10 0 10 20
Ebm~o W)

Figure 2 Bit error probability under the Gaussian assumption for 4-tap predictor (a) with no matched filter, (b)
with matched filter [5].

Ketchum and Proakis also evaluated a number of algorithms for estimating and suppressing the

narrowband interference. The algorithms were classified into two general categories. One was based on

performing a spectral analysis on the received signal using the fast Fourier transform (FFT algoridhm.

Depending on the spectral estimate obtained, a transversal filter was designed to suppress the interference. The
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algorithms in the authors' second category were based on linear prediction, as was the case in [41. An important

aspect in their investigation was the size of the interference suppression filter (in terms of number of taps)

required to handle multiple-band interference. They found that if the filter order (number of taps) is increased

the frequency response improves, in terms of providing a deeper notch at the interfering tone frequencies and

less attenuation in the frequency range between notches. They also demonstrated that a prediction filter having

a number of coefficients (or taps) that is fewer than twice the number of interfering bands does nothing to

suppress the interference.

Li and Milstein [61 examined two similar forms of estimation-type interference rejection filters. They

compared the results of a transversal filter with two-sided taps versus the prediction error filters (with one-sided

taps) previously described in [4,5]. Figure 3 reveals the differences in these two filter configurations. Whereas

the linear prediction filter uses past signal samples to estimate the current input, the two-sided transversal filter

uses "future" samples as well as past samples to estimate the current input. They found in this study that in most

cases, the two-sided structure worked better than the one-sided structure in terms of the signal-to-noise

improvement factor, especially if the frequency of the jamming tone is near the carrier frequency of the spread

spectrum signal. The authors reported a couple of key conditions that should be met when using a prediction

filter for interference rejection specifically for direct sequence signals. One is that the sample interval, T, should

be equal to the chip duration. They also indicated that the period of the PN sequence should be sufficiently long

so that the PN signal samples at different taps are approximately uncorrelated. They also found that the SNR

improvement factor for the two-sided filter increased as the number of taps increased or as the input

interference-to-signal power ratio J/S increased.

Another point that Li and Milstein made was that if the Widrow-Hoff LMS algorithm is used, because

of the symmetry of the two-sided transversal filter, the samples on the -kth and kth taps could be added together

first and then multiplied by the weight ak. Because the number of variable weights is halved, the number of

multiplications is reduced, achieving a simpler implementation.
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Figure 3 Transversal filter stritures: (a) one-sided predictive filter (b) two-sided interpolating filter.
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fltis and Milstein in [7] performed a stricter performance analysis of the narrowband interference

rejection techniques already mentioned in [4-61. They presented analytical expressions for the exact bit error

rates for two direct sequence spread spectrum systems under the conditions of either tone or narrowband

Gaussian interference.

Of particular relevance to this thesis effort is the work of Saulnier [8-111. He has performed hardware

implementations of interference suppression filters using three different transversal filter structures: charge

transfer device (CID), digital filter techniques, and surface acoustic wave (SAW) device. These three

implementations were of the estimation-type adaptive filter. He has also examined the transform domain

approach using FFTs.

•NTc O a

e ,k

Figure 4 Block diagram of the "burst processing" adaptive LMS filter.

In [81 Saulnier, along with Das and Milstein, designed a CTD-based adaptive filter. The adaptive filter

architecture implemented the Widrow-Hoff LMS algorithm using only two multipliers; a technique that could

be used regardless of the filter order. This hardware simplification was achieved through the use of a "burst
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processing" technique (Figure 4). A two-sided version of the adaptive filter constructed with the CTD's was

used to suppress a single tone jammer where probability of error measurements demonstrated the effectiveness

of the configuration. The test system configuration not only specified 16 tap weights, but also a 26.3 kHz

sampling frequency and chip rate, and a 7-bit PN code.

The authors' motivation for using the burst processing technique stemmed from the cost and complexity

of the required four-quadrant multipliers necessary to perform the 2N multiplications and the N storage elements

required of an Nth order filter. The burst processing technique may also be employed if a software

implementation of the LMS is chosen and access to the individual delayed signal samples is not possible. The

authors show that this technique does not compromise the convergence time of the adaptive process; however,

it does require N times the bandwidth of the conventional LMS hardware configuration. With the burst

processing arrangement, a transversal filter is actually not needed; however, two identical wideband delay lines

are required. The authors also warned that intersymbol interference (ISI) caused by the correlation inherent in

the PN code is present in an interference suppression subsystem when the PN code length is shorter than the

order of the filter.

Saulnier, Das, and Milstein followed this work with an identical setup with a digital hardware

implementation instead of the CTD [9]. However, in this effort there was a variation on the type of jamming

signals tested, such as single-tones, swept-tones, and narrowband Gaussian noise. Again, several important

aspects of their test arrangement included processing the code at baseband, and obtaining chip and bit

synchronization directly from the code generator. The authors also embark on a discussion between the selected

convergence value, J, in the LMS algorithm and the PN code balance of l's and O's since they affect filter

transfer function. They also concluded that a small value of j works best with a slowly swept frequency tone

and, likewise, a larger p is appropriate for faster swept tones.

Saulnier, Grant, and Das recently performed a hardware experimentation using a SAW-based adaptive

filter to perform the interference suppression [10]. The primary advantage of using the SAW-based transversal

filter is the availability of higher bandwidths and operating frequencies (correlation of the DS signal at RF). The
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paper discussed the design and performance of an 8-tap LMS adaptive filter constructed using a SAW tapped-

delay line with a carrier frequency of 300 MHz. The difference in this study is that a direct hardware

implementation of the LMS algorithm was accomplished, as opposed to using the burst processing technique,

or other similar implementation of the LMS algorithm.

Most of the references mentioned so far primarily conducted interference suppression in the time-

domain using the estimation-type predictive or two-sided filter configurations. However, throughout the 1980's,

work has been accomplished in the frequency-domain, otherwise known as transform-domain interference

excisors [2,3,11-141. Another paper conducts a comparison between implementations in the time and frequency

domains [151. In addition, two thorough review papers cover many of the areas of interest within the interference

rejection domain of spread spectrum communications [2,31.

Regarding research at the Air Force Institute of Technology (AFIT), in 1982 2nd Lt Michael Shepard

submitted a thesis on the performance of a PN spread spectrum zceiver preceded by an adaptive interference

suppression (AIS) filter [161. Shepard simulated a SAW PTF operating in the 200-300 MHz band. The

simulation included the modeling of the SAW device, filter tap weights, Applebaum and power inversion

adaptive algorithms, and the filter fabrication and circuitry errors. In addition, the desired and interfering signals

were generated in the simulator, passed through the AIS filter, and demodulated by a simulated matched filter.

The system performance was determined by measuring the improvement in pre-detection signal-to-jammer ratio

(SJR) and post-detection signal-to-jammer plus noise ratio (SJNR) provided by the AIS filter, and by computing

the AIS filter convergence rate. Shepard was able to show that the filter provided sufficient null depth (up to

60 dB); however, the minimum obtained 3-uB notch bandwidth was only as low as 8 MHz. Also, his

interference suppression configuration used two SAW PTFs; one for interference monitoring and one for

interference suppression, as seen in Figure 5.

In 1984, Way developed a simulation program to implement a 19-tap interference suppression filter to

DS/SS signals [17]. Way implemented a different adaptive algorithm: a "soft-constraint" version of the least-
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Figure 5 Shepards' simulated adaptive configuration using two PTF's.

mma-square (LMS) algorithm. He examined the filter's effectiveness versus single-tone jammers and frequency

hopping tone jammers. He likewise evaluated the perfonnance of the filter via SNR improvement.

In 1990, Mikulanicz provided a performance evaluation of a 128-tap ACT ITF [18]. While he intended

to evaluate its effectiveness for interference suppression in DSISS systems, he incurred difficulties, and resorted

to applying the device as a matched filter for PN maximal-length codes. He also demonstrated the effectiveness

in creating assorted FIR bandpass [filter responses using the rectangular, Hamming, and Hanning window

distributions. It is noted that the version of ACT ITF us"ed in Mikulanicz' research has been significantly

upgraded for the current research effort.
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III. Theoretical Developments

3.1 Direct Sequence Spread Spectrum (DSISS) Systems

A spread spectrum (SS) system is a system that produces a signal with a bandwidth much wiuer than

the original message bandwidth. SS techniques have made possible the development of interference resistant

communications with multiple access capability while having low-probability-of-intercept (LPI). There are a

variety of types of SS systems with different modulation formats:

(1) direct sequence, which is usually a form of phase-shift keying;

(2) frequency hopping, in which a narrowband frequency-shift keyed signal is hopped over a wide band

with pseudorandom carrier frequency selection;

(3) time hopping, which is similar to frequency hopping except the PN sequence selects the

transmission time (slot) within consecutive time frames (usually of low duty cycle or bursts); and

(4) hybrid systems, combining any of the three main types.

Direct sequence spreading, the focus of this research, is achieved by modulo-2 addition of a binary

message sequence and a higher rate pseudorandom binary sequence. The result is a sequence at the

pseudorandom sequence rate which is used to suppress-carrier modulate an RF carrier signal (e.g. binary phase-

shift-keyed (BPSK), or quadrature phase-shift-keyed (QPSK) formats). The signal is identified as suppressed-

carrier because the spectral density of the modulated signal has no identifiable carrier present, although the

spectrum is centered at (oc. This technique spreads the energy of the signal over a large bandwidth so that it

could be hidden in the noise levels of unintended receivers. Hence the signals have a low-probability-of-

intercept while increasing the resistance to interference from co-existing users of the frequency band, multipath,

and jamming.

3.1.1 Spread Spectrum System Model

The principal components of a DS modulated SS system are illustrated in Figure 6, where d(t) is the

digital data or message sequence (± 1), Po is the transmitted signal power, c(t) is the PN code sequence (or
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"chip" sequence with values ± 1), and po. is the carrier frequency (rad/sec). Multiplication of the bipolar data

sequence with the bipolar PN sequence is equivalent to a modulo-2 addition (or exclusive-OR) of the sequences

when the data or code sample value of "+I" is represented as a binary "0" and the value of "-1" as a binary

"1". This higher rate sequence (at the PN code rate) is then multiplied by a carrier resulting in a phase shift

of 0 or ic radians and is expressed as

s(t) = A (t)c(t)cows t (1)

The rate of the PN code is typically on the order of megachips per second (or more), while the rate

of the message waveform is oftcn on the order of kilobits per second or lower, depending on the desired amount

of processing gain (defined below) needed when a physical constraint is imposed on the maximum PN code rate.

As a result of this modulation, the power in the transmitted signal is spread in frequency over a bandwidth

corresponding to the PN clock frequency.

S(t) r(t)

c(t) v'•fscos ((oot) ^/"sCos (coot) c(t)

Figure 6 Direct sequence spread spectrum communications system model.
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The receiver has a replica of the transmitted PN code, c,,(t), which, when mixed with the incoming

signal, serves to despread the wideband signal to its original message bandwidth, giving:

r(t) = d[ t)cQct(t)caso / = V ,d(t)coswt (2)

The despread signal is then demodulated by mixing the (still) RF signal with a local oscillator at co yielding

rl(t) = -/UPd(t)cwswct • ',cosc 8a•t = Pd(t) (3)

The message sequence is then passed through a corlelator to perform detection in accordance with traditional

digital communication systems.

An important parameter that is useful for specifying the performance of a SS signal in the presence of

interference is known as the processing gain [201. This processing gain, G,, is usually defined as the ratio of

the RF signal bandwidth, Ws, to the message bit rate, Rb. Another definition of the processing gain of DSISS

systems is the ratio of the chip rate of the PN code to the data bit rate. The former definition gives a value that

is factor of two larger than the latter definition, so care must taken to state which formula is referenced.

Obviously from these definitions, the larger the processing gain, the greater the advantage versus interfering

signals. This processing gain is either achieved by increasing the chip rate or reducing the data rate, or both.

The performance of the DS/SS signal in terms of signal-to-noise ratio (SNR) can be expressed using

the processing gain, G,, such that

SNJr•. G,$SNR. . (4)

At the output of the correlator/matched filter, the bit error probability of the system in the presence of only

additive white Gaussian noise (AWGN) is the same as that of a BPSK signal without spread spectrum,
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Pe= Q h); whcrQ(X) ffix()d (5)

and Eb is the data bit energy and NJ2 is the two-sided noise power spectral density (PSD). In effect, what

Equations (4) and (5) suggest is that a spread spectrum signal can be transmitted at a lower peak signal power

than traditional BPSK signals (by an amount equal to the processing gain) and still maintain the same probability

of error. The effect of a tone interferer on the output SNR of the receiver and the bit error probability are

examined in a later section.

3.1.2 Characteristics of PN Sequences

The terms pseudorandom (PR) or pseudonoise (PN) are given to a class of linear code sequence which

generates sample statistics similar to a random noise-like waveform. However, the sequences are actually both

deterministic and periodic. A completely random sequence is neither deterministic nor periodic; e.g., the outcome

of successive coin tosses. The type of PN code most often used in DS-SS systems is the maximal sequence or

m-sequence. By definition, the maximal code is the longest code that can be generated with a particular shift

register (delay element) of a given length [19]. For a binary n-stage feedback shift-register generator, as shown

in Figure 7, the maximal length sequence is 2" - 1 chips. The m-sequence exhibits a number of randomness

properties important to SS systems [191:

(1) Balance Property. For every m-sequence, the number of ones exceeds the number of zeros by

exactly one. This balance of ones and zeros eliminates the dc component by an amount proportional to the

length of the code. A carrier modulated by the code will therefore be suppressed by a factor of 1/(2" - 1).

(2) Shift-and-Add Property. A phase-shifted replica of a maximal linear code modulo-2 added to itself

results in the same sequence but with a different phase shift.

(3) Run-Length Distribution. The distribution of runs of p consecutive ones or zeros in a maximal

sequence of length 2" - I is defined by 2r-(2). This means that in every period, one-half of the runs are of

3-4



modulo-2 adder

output

tFigure 7 PN (5,4,2,1) maximal code generator

length 1, one-fourth are of length 2, one-eighth are of length 3, and so forth.

(4) State Exhaustion. All possible n-states except the all-zero state are generated by an n-stage binary

shift register generator with maximal feedback connections. For instance, a 2-stage with maximal feedback taps

on both stages will sequence through the states 11, 01, and 10 before repeating states.

(5) Autocorrelation Properly. The autocorrelation of an m-sequence for all values of phase shift greater

than or equal to ±1 chip is equal to -1 and increases linearly from -1 to the peak value of 2 - 1 for phase

shifts less than ±1 chip. The autocorrelation property is of particular importance when examining the spectral

characteristics of the DS/SS signal.

3.1.3 Spectral Characteristics of PN Sequences

The time-averaged autocorrelation of the periodic PN sequence of length N, when taken alone, can be

represented as
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where r is the amount of time shift. From the balance property it is clear that when I1 I > T, the average value

of the autocorrelation is approximately zero (actually -1/?' ) because of the equal probability of ±1 chips. Since

PN codes are periodic, the limiting operation can be dropped. Therefore, the autocorrelation over one period of

the code is

Rm 71 (r) c(c(t+r)dk. (7)

This autocorrelation is periodic when the time-shift equals

= (2r - 1)Tc = NTc" (8)

The autocorrelation is then given by:

))I ArIrI t ,T (9)
[-2-n for I • T .

and is illustrated in Figure 8. In the spread spectrum receiver detection process, the peak allows acquisition and

synchronization for despreading and eventual demodulation.

The power spectral density, Sp,(,o), of the PN sequence is obtained by taking the Fourier transform of

the autocornelation function, RpA(').

S = r RI (10)

Realizing that a vertical shift c-f the triangular peak by -1/2/ would only affect the dc component, Rv(kr) can

be approximated as:

3-6 A ()
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where

A TV (12)
0,.'l• > T,

Substituting the above equation into the Fourier transform for Rp(r) yields

~ ~Rh1~) = f A(2Ja*~k(13)

S= TAwl(T--

The PSD, Spv(oe), is shown in Figure 8(c).

3.1.4 Effect of Tone Interference on Spread Spectrum Performance

As was mentioned in Chapter 1, the tone jammer is the most damaging signal to the effective operation

of a DSISS system and is easily generated by the enemy. However, the effects of the jammer are minimized

by the inherent operation of the spread spectrum link. Mixing a locally generated replica of the PN sequence

in the receiver with any incoming interfering signal serves to spread the energy of the interferer proportional

to the amount of the processirg gain of the SS system. It is difficult to apply a broadband jammer with enough

energy spread across the spectrum bandwidth to counteract this phenomena. Henceforth, the narrower the input

interfering signal is at the input of the spread spectrum receiver, the greater the probability that its energy will

pass through the system bandwidth of the spread spectrum receiver. Likewise, as was stated in Chapter 1, a tone

jammer is most effective at the carrier frequency of the spread spectrum signal for the reasons just mentioned.

Therefore, the analysis of the effects of a tone jammer with regard to the JSR and P, quantities of the received

SS signal will be examined under this worst-case scenario.

In considering the effect of a single tone interferer at the carrier frequency of the transmit SS signal,

it is assumed that the jammer power, J, is much greater than the Gaussian noise, Le.
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(C)
Figue 8 Modulation/demodulation of a PN sequence: (a) perfomring the autocorrelation of a PN sequence,

(b) plot of the autocorrelation, and (c) the spectral representation (PSD).
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J -- m J+ N J (14)

where J. is the PSD of the jammer. The jamming signal is expressed as

A(t) - W QW(Wt ÷ @ (15)

where 0 is the phase of the janmer with respect to the phase of the carrier. A mom general expression for the

jamming signal would be

At) = W ca[(r,) + AW&)t + 6] (16)

where Aw is the frequency offset from the carrier. At this frequency, the signal input to the receiver will be

approximately

rit) - (iWAtW*C=aW~t + ýWP aas(ci + 6) (17)

After despreading, recognizing that cl(t) = 1, and carrier demodulaion, the signal becomes

rP(I) - PAOE I + cm2ct) + V/s'YAt)f 1 + cs2wc.Jcae - (18)

The output of the correlator, which eliminates the double-frequency components, is

ro(t) = PAO + rSPiC(9)caM (19)

Notice that the SS signal is collapsed to a narrowband signal, while the interfering signal is expanded by

multiplicatin with the high bit-rate PN sequence, c(t), to a wideband signal. The interfering signal's new PSD

is of the following form [311:

-eq- SJ OIOA I (20)
2f.

where f1 = 1T, (where T, = chip interval). After correlating with the integration period equal to the data bit

interval Ti (which acts as a low-pass filter)
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S1 (f PsPJ CO (21)
2f,

Using the expression for probability of bit error, P, given in Equation (5) and replacing N J2 with SjA) yields

Q ( 2E4) ](22)

Since E, = PsTb andf/ = I/Ti, P, can be simplified as

" = ( ~ i ) ( 4 z ) (23)

where cas•O 1/2 because of its random phase over the range [0, 2x] with respect to the phase of the

carrer.

The effect of the tone jammer at the output of the SS receiver can also be expressed in terms of the

SNR [20]:

____ P, G ,,
!F " . P . (24)2T2G, 2T

Neglecting the noise term, this yields

s .- Pi (25)

Stated another way, the term (E,/Jo),, is the bit energy per jammer noise PSD required to maintain a link at

a specified error probability [32]. It can be formulated as follows:
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3.1.5 Spread Spectrum System Performance with Interference Suppression Subsystem

The performance of a DS/SS system with an interference suppression filter subsystem in place to reject

narrowband jammers can be measured according to one of two criteria: SNR improvement and, additionally,

average probability of bit error, P,. The SNR improvement factor, defined as the ratio of the SNR with the

suppression filter in the system to the SNR of the system operating without the rejection filter, provides a good

qualitative indication of system performance while the P, provides a good quantitative description [3].

3.1.5.1 Derivation of the SNA Improvement Factor

The SNR improvement has been calculated by Li and Milstein [61 with both the predictive (one-sided)

adaptive filter and the two-sided adaptive filter. The formulation leading to the final results will not be given

here. The results are important for comparison purposes.

It can be shown that the SNR improvement factor, G1, for the prediction error filter under single-tone

jamming, and with the optimum tap weights obtained (i.e. convergence of the chosen adaptive algorithm) is

given by [6]:

+ 2

1L+ 2($ +0 )uin(LQ7) [ +

+ 2 L2) + J dn(07) C +2 (27)
[L ) 2( o + ua

+ dn~2(gQ7)

where S = signal power, J = jammer power, q,2 = power due to thermal noise, L = number of taps in the PIT,

T = sampling interval = chip duration, and fl = angular frequency of the jamming tone. If we assume

0,2 = 0 (a reasonable approximation for laboratory results), then the following simplification can be made
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2S sin(LQ1)L+- __

G [ + J (L + si(L 17. J odn(07) (28)
23 - +n-- -) L + 2S in(- Q7) ms[(L + _)___

J sin(0i)

For the two-sided transversal filter, the SNR improvement factor, G2, is as follows [6]:

G=(SI J oa.
(S3/IV). J + 02 (29)

2(S + a' )| an(a0 I

where 2N = the total number of taps; N on each side of the center tap. Again, if we make the assumption that

0.2 = 0, then

G2=1+: [2f -I+ K2N+0 11 (30)5=1÷2 -1÷ n(07) (

From (30), we see that G2 increases with an increase in the number of taps or as the input interference-to-signal

power ratio J/S increases. Also note that G2 is dependent upon LIT. The transfer function, H(w), of the

transversal filter with the optimal tap weights established, can be reviewed in [6] but will not be given hero. This

transfer function yields insight into the interference rejection process.

The final results for the probability of bit error, Pb, will also not be given here since it will not be

measured in the experimentation of this thesis. Interested readers may see [7,211 for details.

3.2 Adaptive Processes

This section will examine the pertinent adaptive processes that will support the work in this thesis. It

will begin with a short introduction on what an adaptive system is and its benefits, followed by the fundamental

linear equations that characterize the adaptation, and conclude with a look at the least-mean-square algorithm,

which will be used in this study. Most of what is developed here follows Widrow and Stearns development

[22,231 and enhanced by Haykin [24] when appropriate.
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3.2.1 General Description of the Adaptive Process

According to one of the foremost authorities on adaptive processes, Bernard Widrow, an automated

adaptive system is one "whose structure is alterable or adjustable in such a way that its behavior or performance

(according to some desired criterion) improves through contact with its environment [221." Widrow and Steams

describe a simple example of this with the automatic gain control (AGC) used in radio and television receivers.

In this example, the function of the circuit is to adjust the sensitivity of the receiver inversely as the average

incoming signal strength. The receiver is thus able to adapt to a wide range of input levels and to produce a

much narrower range of output levels.

Adaptive systems, although of varied methods of operation, usually have the following characteristics

in common [221:

1. They can automatically adapt or self-optimize in light of changing (nonstationary) environments and

changing system requirements.

2. They can be trained to perform specific filtering and decision-making tasks. In a sense, adaptive

systems can be "programmed" by a training process.

3. Because of the above, adaptive systems do not require elaborate synthesis procedures. Instead, they

tend to be "self-designing".

4. They can extrapolate a model of behavior to deal with new situations after having been trained on

a finite and often smaller number of training signals.

5. To a limited extent, they can repair themselves; that is, they can adapt around certain kinds of

internal defects.

6. They can usually be described as nonlinear systems with time-varying parameters.

The most important characteristic of the adaptive system is its time-varying and self-adjusting

performance. The need for such performance may readily be seen by realizing that if a system is of fixed design

which is considered optimal, the implications are that the designer has foreseen all possible input conditions,

at least statistically, and knows what the system is to do under each of these conditions.

3-13



In many instances, the complete range of input conditions may not be known sufficiently or the

conditions may change from time to time. In such circumstances, an adaptive system that continually seeks the

optimum within an allowed class of possibilities, using an orderly search prucess, would give superior

performance compared with a system of fixed design.

The adaptive system is inherently difficult to analyze in conventional terms, because of their nonlinear

and time-varying characteristics. In essence, if a signal is applied to the input to determine its response

characteristics, the system adapts to this specific input and thereby changes its own form.

Adaptive systems can be classified into two schemes: open-loop and closed-loop. The open-loop

adaptive process (or non-iterative process) involves making measurements of the input, applying this information

to a formula or to a computational algorithm, and using the results to set the adjustments of the adaptive system.

Closed-loop adaptation, on the other hand, involves automatic experimentation with these adjustments and

knowledge of their outcome in order to optimize a measured system performance. The latter process may be

called adaptation by "performance feedback" and is therefore iterative in nature. The closed-loop scheme will

be implemented in this thesis.

The performance feedback process is diagrammed in Figure 9. One can call the input signal x and

define a "desired response" signal d, which is assumed to represent the desired output of the adaptive system.

The error signal, e, is the difference between the desired output signal and the actual output signal, y, of the

adaptive system. Using the error signal, an adaptive algorithm adjusts the structure of the adaptive system, thus

altering its response characteristics by minimizing some measure of the error, thereby closing the performance

loop.

In the prediction application of an adaptive system of Figure 10(a), the desired signal is the input signal,

s, and a delayed version of the latter is sent to the adaptive processor, which must therefore try to "predict" the

current input signal in order to have y cancel d and drive e toward zero. Figure 10(b) shows the adaptive

processor in an interference-canceling configuration. Here the signal, s, is cornrpted by additive noise, n. A

distorted but correlated version of the noise, n', is also available. The goal of the adaptive processor in this case
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Figure 9 Adaptive system in the closed-loop configuration.

is to produce an output, y, that closely resembles n, so that the overall output, e, will closely resemble s. The

key element that allows this adaptive structure to achieve its goal is the fact that s and n are uncorelated,

whereas n and n' are corn'!lated. If these conditions are violated, the adaptive filter may cancel the signal s in

place of (or in addition to) the noise or could fail to cancel the noise altogether [23].

3.2.2 Mati ematical Description of Adaptive Processes

The adaptive linear combiner, or non-recursive adaptive filter, is fundamental to adaptive signal

processing, and is the single most important element in "learning" systems and adaptive processes in general

(see Figure 11) [221. In essence, it is a time-varying, non-recursive digital filter. The combiner is called "linear"

because for a fixed setting of the tap weights its output is a linear combination of the input components. In other

words, with fixed tap settings it is merely a finite-impulse response (FIR) filter. When the adaptive processor
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Figure 10 Adaptive processor in (a) predictive filter configuration, and (b) interference canceling configuration.

is implemented with an adaptive linear combiner and unit delay elements, the structure is called an adaptive

transversal filter or tapped-delay line.

The elements xk through Xk-L are L + I sequential samples of the same signal source and are interpreted

as a single-input case (versus a possible multiple input case; i.e. adaptive antenna arrays). The input vector for

the single-input case depicted in Figure 11 is:

Xk = [Xk Xkl_ _._ XkJ (31)

The T stands for transpose, so Xt is actually a column vector. Again the subscript k is used as a time index. For

this single-input case, the elements are sequential samples taken at points k, k-I,..., going back in time through

the sequence of data samples. One obtain the input-output relationships for Figure 11 as follows:
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In most practical instances, the adaptive process is oriented toward minimizing the mean-square value, or power,

of the error signal. The source of the desired response signal, d,. depends on the application of the adaptive

combiner. Often considerable ingenuity is required to find a suitable signal, since if the actual desired response

were available, one would generally not need the adaptive system.

The error signal with time index k is

4 k -= dk A (35)

Substituting in the value from Equation (34) yields

T (36)
e= -X;W =w dt - WTX (6

where the subscript k is dropped so that an analysis can be accomplished at a particular point in time with the

taps weights frozen. Squaring Equation (36) to obtain the instantaneous squared error,

e2: WrXkXW _ 2dkXrW (37)

If one assumes that k, d4, and X, are statistically stationary, and taking the expected value of Equation (37)

over k,

E[ e E E WrJ [XX,C] W - 2E[d XJ W (38)

The mean-square -wor function can be more conveniently expressed as follows. Let R be defined as

the square matrix

2

Xk Xi~k-. .l-
2

R = XkX, = E _Xk Xki-1 Xk-lXk-L (39)
t -'. i i i

2
Xk-Z:Zk Xk-LhkI XkL

This matrix is designated the input correlation matrix. The main diagonal terms are the mean-squares of the

input components, and the cross terms are the cross-correlations among the input components. Let P be similarly
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defined as the column vector

P = E[dkIJ = EldkXt d&zkl - _XkLI (40)

This vector is the set of cross-correlations between the desired response and the input components. Leting the

mean-square error (MSE) in Equation (38) be designated by 4 and expressing it in terms of Equations (39)

and (40):

E[-[ = E[4] * WTRW - 2Prw (41)

The mean-square error 4 is precisely a quadratic function of the components of the weight vector W when the

input components and desired response input are stationary stochastic variables. A portion of a two-dimensional

mean-square-error function is illustrated in Figure 12. The bowl-shaped quadratic error function, or performance

surface, formed in this manmer is a paraboloid (or hyper-parAboloid if there are more than two weights). The

point at the "bottom of the bowl" is projected onto the weight-vector plane as W, the optimal weight vector

or point of minimum mean-square error.

Many useful adaptive processes that cause the weight vector to seek the minimum of the performance

surface do so by gradient methods [22]. The gradient of the mean-square-ewror performance surface, designated

V(O) or simply V, can be obtained by differentiating Equation (41) to obtain the column vector

at at at t
aw [aWO awl awL (42)

= 2RW - 2P

where R and P are given by Equations (39) and (40), respectively. To obtain the minimum mean-square error

the weight vector W is set at its optimal value W., where the gradient is zero:

V=S=2RW* -2P (43)

Assuming that R is nonsingular, the optimal weight vector W, sometimes called the Wiener weight vector, is

found from Equation (43) to be
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This equation is an expression of the Wiener-Hopf equation in manri form [22]. The minimum neam-square

erro is now obtained by substituting W' fom. Equation (44) for W in Equation (41):

F, - [4 + WSrtW)V - 2PW'T (45)
ME[db P-1pTW 1rP - 2?'rF1 P

Simpifying this result using three rules from linear algelxu. AA' = I; [ABlT = VTAT, and. for syinmetrical

matrices. 1rT = R; DtR-f = Rt', Equation (45) becomes

C.. -E(b- PTr'P -Ef[db- P'W (46)

A useful and important statistical condition exists between the error signal and the components of the

input signal vector when W = W, namely,
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E[skkJw,.--' -P -P (47)

This result of Wiener filter theory states that when the impulse response of a filter is optimized, the error signal

is uncorrelated with (orthogonal to) the input signals. Hence, one can conclude that the two criteria: "minimum

mean-squared error" and "orthogonality between error and input" yield identical optimum filters [22,241.

3.2.3 The Least-Mean-Square Algorithm

I now discuss the algorithm for adjusting the weights and descending on the performance surface to

the minimum mean-square error. I will exclusively use the least-mean-square (LMS) algorithm in this thesis

effort. The LMS algorithm is important because of its simplicity and ease of computation; it does not require

off-line gradient estimations or repetitions of data, nor does it require the matrix inversion (R') [24]. Thus, it

is perhaps the most universally applicable adaptive algorithm in use today [23].

Again, when using the adaptive linear combiner structure explained earlier, one has, as in Equation (36)

, = dk - 4Wk (48)

To develop an adaptive algorithm, one would normally estimate the gradient of • = E[ek] by taking differences

between short-term averages of ek2. Instead, to develop the LMS algorithm, e,2 is taken itself as an estimate

of E. Then, at each iteration in the adaptive process, a gradient estimate is obtained for which one can specify

a steepest-descent type of adaptive algorithm [221

(49)
- W + 2 peAhk

This is the LMS algorithm. Actually, Equations (48) and (49) completely describe the LMS algorithm. [24].

From Equation (49), one sees that given an input signal x. and a desired signal d4 the implementation of the

LMS adaptive algorithm requires only the selection of the convergence parameter p [23]. This convergence

factor, or gain constant, regulates the speed and stability of adaptation, and is hence plays a pivotal role in
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determining the performance of the system. In terms of convergence and stability, a large p could result in an

adaptive process that never converges to the minimum mean-square error (MMSE) solution. If p is too small,

the coefficient vector adaptation is slow, and therefore the system may not react rapidly enough to cope with

changing signal statistics [23].

Since the weight changes at each iteration are based on imperfect gradient estimates, one would expect

the adaptive process to be noisy. Overall, the LMS algorithm is attractive because it can be implemented in a

practical system without squaring, averaging, or differentiating and is elegant in its simplicity and efficiency.

In fact, the efficiency of the LMS algorithm has been shown to approach a theoretical limit for adaptive

algorithms when the eigenvalues of the R-matrix are equal or nearly equal [221.

As with all adaptive algorithms, a primary concern with the LMS algorithm is its convergence to the

optimum weight vector solution, where E[ e 2] is minimized [22]. It is found that convergence is guaranteed only

if

> (50)

where X. is the largest eigenvalue; that is, the largest diagonal element in A, the eigenvalue matrix. For the

transversal filter structure, the convergence of the weight-vector mean is assured when

0 < P < 1 (51)

(L + 1)S

where S is the signal power and L is the filter order or number of taps. In practice, p is generally restricted to

a small fraction of this stable range in order to smooth the noisy instantaneous gradient estimate [23]. As an

aside, there is no known unconditional proof of convergence of the LMS algorithm [22].

There are other adaptive algorithms one could apply to the interference rejection problem, but they have

certain trade-offs when comparing to the LMS algorithm. For instance, the recursive least-squares (RLS), another

popular algorithm, is capable of realizing a rate of convergence that is much faster than the LMS algorithm.

However, the price paid is the increase in computational complexity [24]. However, the random search algorithm
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will be examned beame of its application in unque situationm e.g., the Wput delayed signal pes ae not

available or when a parameer other than the tap weights is the variable.

3.2.4 The Random Search Algorithms [301

Besides the method of steepest-descent in searching the quadratic performance surface for the optimal

solution to minimizing the mean-square error, which is a systematic technique employed by the LMS and other

such algorithms, the minimal mean-square error solution may also be found by random search techniques.

Random searching seeks to improve performance by making random changes in system parameters for my case,

random changes in the tap weight vector. A simple algorithm based on this method is called random search

by "natural selection".

In random search by natural selection, a random change is made in the weight vector of the adaptive

processor (i.e. PTF). The mean-square error is measured before and after the change and the measurements

compared. If the change causes the error to be lower, it is accepted. If it does not, it is rejected, and a new

random change is tried. This procedure can be described algebraically as follows:

W&1 - Wk + ![I + ap(tl(Wi) - ((Wt + Ud)IILU (52)

where Uk is a random vector, 4(W,) is an estimate of mean-square error based on N samples of ,, with W :

W&; 4(W + U,,) is an estimate of mean-square error based on N samples of ,, with W = W, + Uk; and sgn(z)

is +1 for z > 0 and -1 for z < 0.

This algorithn, although easy to implement, has the drawback that nothing is learned when a trial

change is rejected and forgotten. For this reason, a more efficient "linear" random search algorithm (LRS) is

available. In this algorithm, a small random change I4 is tentatively added to the weight vector at the beginning

of each iteration. Th corresponding change in mean-square error performance is observed. A permanent weight

vector change, proportiotal to the product of the change in performance and the initial tentative change, is then

made. This procedure can be expressed algebraically as follows [22]:
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W = - C(Wt + UJ (UI (53)

where U. is a random vector from a random vector generator designed to have a covariance of 021; t(Wk) and

4(Wk + UV) are as defined above; and the terms p and a' are design constants affecting stability and rate of

adaptation.

The LRS algorithm is "linear" because the weight change is proportional to the change in mean-square

error, and in this respect it differs from the random search by natural selection as described in Equation (52).

The latter algorithm is simpler to implement but does not perform as well in terms of reaching convergence.

It is difficult to treat mathunaticaily.

3.2.5 Comparison Between the LMS and LAS Algorithms

As a brief comparison, it is noted that both algorithms are easily implemented in adaptive systems. The

LRS algorithm is much less efficient than the LMS in terms of data usage, and it has a higher misadjustment

for a given speed of convergence. Misadjustment is the amount of the average excess mean-square error beyond

the minimum mean-square error divided by the minimum mean-square error. The LMS algorithm, however, is

restricted in use to the adaptive linear combiner of Figure 9 where the inputs X. and d, are known, while the

LRS algorithm is more general in its use. For example, it can be used in adaptive systems that where the input

signals are unavailable or where the adjustment parameters are not signal weights [22). For example, Figure 13

demonstrates the relative performances of the algorithms presented as a "learning" curve, which expresses the

value of the mean-square error as time progresses (in this case in the number of data samples). Figure 13

further reveals the superior speed of convergence and efficiency of the LMS algorithm. Also note that while

individual sample functions of the LRS are noisy, the ensemble average of 32 sample functions is not nearly

as noisy.
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Figure 13 Results of a fixed-delay modeling expenment with theoretical total misadjutument at 9.375 percent.
(a) individual learning curves, (b) ensemble averages of 32 learning curves [30].
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IV Trogrammable Transversal Filters and the ACT Technology

4.1 Transversal Filter Fundamentals [25,261

Since the programmable transversal filter is the primary object of consideration in this thesis, it is

appropriate to take a rather detailed look at the ACT PTF used in this study and compare its characteristics with

those of other competing technologies such as surface acoustic wave (SAW), charge-coupled device (CCD), and

digital or VHSIC (very high-speed integrated circuit) implementations of the PTF. The transversal filter was

introduced in the discussion on adaptive filtering by default since it is the device that the adaptive algorithm

adjusts to achieve the minimum mean-square-error. In general, a transversal filter may be realized in any

technology which can provide good delay lines, tapping and weighting mechanisms, and a means for summing

the weighted replicas. Analytically, the transversal filter has an impulse response which is specified by the

sequence of tap weights, and since many algorithms used for signal processing result in a specified impulse

response, a transversal filter often represents the most direct path from theory to hardware. In many applications

it is necessary, or at least desirable, to change or adapt the impulse response with time; thus, a programmable

transversal filter (PTF) is a valuable component [26].

Parameters that must be considered when selecting a PTF are bandwidth, number of taps, dynamic

range, accuracy, linearity, programming rate, power/size/weight, and, of course, cost and availability [25,26].

Some of these characteristics will be examined in the comparison of device technologies.

If a signal and the taps are both discrete in time, then a difference equation applies; this applies to

digital and CCD filters. If the signal is continuous but the taps discrete, as is the case with SAW tapped-delay

lines and ACT devices, then a difference-differential equation applies. If the tapping mechanism as well as the

signal are continuous, then a differential equation is the proper model; this is the case for a SAW convolver.

In order to implement a transversal filter in a given technology, it is first of all necessary that the

technology offer low-loss, low-distortion delay lines. The measure of utility of a delay line is its time-bandwidth

product (TBP), which is a measure of the information capacity or the measure of the complexity of the
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waveform which can be stored in the delay line [26]. For a PTF, this is also a measure of the complexity of the

impulse response.

The availability of high-quality delay lines is a necessary but not sufficient condition for implementation

of PTFs. Signal attenuation, reflections from taps, and unintentional filtering by tapping structures result, even

in fixed-response transversal filters [26]. For PTFs it becomes even more difficult because the tapping circuitry

must now be active, rather than passive.

Concerning TBP, two obvious constraints on a PTF are that the overall delay be at least as long as the

duration of the longest desired impulse response, and that the passband of the device not substantially reshape

the signal spectrum. These constraints, of course, imply that the TBP of the structure is consistent with the

waveform complexity of the impulse response [26].

Dynamic range is a measure of the instantaneous range (i.e., without signal renormalization) over which

signals can be used with a component [26]. In any device, the low end of its dynamic range is limited by noise,

and the high end by nonlinearities that cause limiting or produce spurious signals [25]. Although a variety of

definitions exist, the spurious-free dynamic range will be discussed in this application.

4.2 PTF Device Alternatives [25]

A quick discussion will be provided for each PTF technology type; the ACT device will be examined

more extensively. Bottom-line comparisons to the ACT technology will be the chief interest here.

4.2.1 ACT Technology

ACT was first demonstrated by M.J. Hoskins and B.J. Hunsinger at the University of Illinois in 1982.

Figure 14 is a cross-sectional view of a simplified ACT delay line and is used here to describe the basic ACT

principle of operation.

A surface acoustic wave generated by a high-Q unidirectional transducer (UDT) propagates through

a conductive region of a depleted n-doped GaAs epitaxial layer. This region is the acoustic charge transport

4-2



SAW DOW x(1) NOS ND NO S (• •
S.-- Tap 1 Tap 2 Tap 3

ný- GaAs

ACT Tapped Delay Une

Fllum 14 Simplified drawing of an ACT delay line [291.

(ACT) channel. The traveling surface wave produces electric fields via the piezoelectric coupling of the GaAs

crystal which confine and transport charge injected into the depleted ACT channel at the input contact (IC) due

to the input signal 4t). The charge propagaMs along with the traveling surface wave and electric fields past

nondestrctive sense (NDS) electrodes at the characteristic GaAs SAW velocity, 2864 m/s, to the charge

extraction contact (EX). Each NDS tap then provides a delayed replica, x(t - 7), of the input signaL

As already firmly suggested by now, the ACT device's basi structure is the programmable transversal

filter function with adjustable tap weights and integral tap coefficient storage. Since the bsic operaion of the

generic PTF has already been explained in Chapter 3, it will not be repeated here. Figure 15, however, shows

a simplified schematic of the ACT FT integrated circuit architecture to perform the PTF fimction. Tlis figure

additionally shows that the summing function is provided by parallel connection of the ouqu of all the

programmable attenuators to a tap summing node. The tap coefficient storage is performed by GaAs static

random access memory (SRAM). Without going into details (see [27] for more), the programmable attenuators

4-3



are implemented by C-2C ladders (using only two values of capacitance) that act as multiplying digital-to-analog

converters.

PTF Implementation
Input ACT ChaW NOel

SAW ' 2
Tap Bullet

Copstn ~2C 2

MOAC

4.2.2~~ C~-¢~ Z+e (C

L+

_r,ý __ Tap Woft
-(dn - Slomge

Figsure 15 ACT PFM simplified schematic diagram [29].

4.22 Charge-coupled devices (CCDs)

Charge-coupled devices are an important class of semiconductor devices that are widely used today as

imaging devices in portable video cameras. They are also useful in analog signal processing applications such

as delay lines and filters.

The device operates by transferring packets of clectrons along a semiconductor surface via a sequence

of transfer electrodes controlled with a three-phase clocking mechanism. Other devices transfer the charge within

a buried channel. These buried-channel devices can operate at higher frequencies than the pIrviously mentioned

CCDs and have some similarity to ACT devices. The biggest difference is that the ACT device is -self-

clocking," because the acoustic wave sweeps the charge packets through the device without the need for the

complex multiphase clocking electrode structure that CCDs require. ACTs do not need the transfer electrodes

of CCDs, nor do they need multiphased clock waveforms or separate input gating pulses. An ACT device needs
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only a single-frequency sinusoidal signal ,o drive the surface acoustic wave transducer that generates the acoustic

carrier wave. One disadvantage of the self-clocking nature of ACT devices is that it is not easy to vary the rate

of movement of charge packets in an ACT device. This may be done quite easily in a CCD by simultaneously

varying the frequency of all of the clock phases.

The clock noise problem usually forces high-speed CCD transversal filters into "pipe-organ" structures,

in which each tap has its own narrow delay line channel. This limits the total number of taps, and it also limits

the dynamic range of each tap. Even a fixed (nonprogrammable) CCD transversal filter is a complicated

structure, because each tap's channel must have a complete set of clocking electrodes.

The primary factor that tends to limit the maximum usable frequency range of a CCD is charge transfer

inefficiency. Transfer inefficiency is a measure of how many electrons are left behind during the movement of

a charge packet from one CCD transfer electrode to the next. For example, consider an input pulse which is

originally narrow, corresponding to a higher frequency. As the charge is transfered down the channel some is

left behind, effectively spreading the pulse and causing a frequency roll-off, thereby limiting the frequency

range.

In summary, CCDs have been successful in applications as imagers and variable delay lines at low

video frequencies. However. despite considerable development effort over the past two decades, CCDs have not

made their mark as high-speed signal processors in the VHF range. Limited dynamic range and clock noise

problems are the reasons most often cited by system designers.

4.2.3 Surface Acoustic Wave (SAW) Devices

The SAW device operates by transferring an electric signal to an acoustic signal via interdigital

transducers (IDTs) placed on the surface of a piezoelectric substrate. The acoustic wave velocity is five orders

of magnitude slower than the speed of light. Therefore, delays of approximately 5 js can be obtained on

materials 1 cm in dimension versus the 1 km of coaxial cable needed to obtain delays of the same magnitude.
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SAW devices are in considerable demand for a variety of signal processing functions throughout the

VHF and UHF bands. Nonprogrammable transversal filters, resonators, oscillators, delay lines (fixed, tapped,

dispersive, nondispersive), and correlators are part of the SAW repertoire. These devices are appealing to system

designers because they are simple, cheap, rugged, passive, and very repeatable.

Although fixed-tap ACT transversal filters look similar to SAW devices, there are many important

differences. Both devices use a surface acoustic wave, but in the SAW device the acoustic wave is the signal

itself. In the ACT, the wave is only a carrier for the signal. This has many important consequences. The wide

bandwidth of an ACT device extends down to dc, whereas SAW is fundamentally a bandpass technology. Also,

each tap of an output SAW PTF extracts some of the acoustic energy, and thus diminishes the signal that will

be sensed by the other remaining taps. Signal sensing in an ACT tap array is nondestructive; the number of

electrons in a charge packet are only nominally diminished by the presence of a tap. An ACT device can have

thousands of fixed nondestructive sensing (NDS) taps.

Also, in SAW devices, there is the fundamental problem of insertion loss and triple-transit echoes which

must be traded off; ie., a simple SAW filter can never be closely impedance matched at both input and output

ports, or substantial triple-transit echoes occur. ACT devices do not have a triple-transit problem because the

"charge transport mechanism is unidirectional, and therefore, not capable of supporting multiple reflections of

transported charge between transducers or other reflective objects" [25].

The most important difference between ACT and SAW devices is integratability. ACT devices are made

on GaAs, so they can be integrated with linear and nonlinear active circuits. SAWs are usually fabricated on

insulating piezoelectric materials such as quartz and lithium niobate, and fabrication of active circuits directly

on these substrates is not presently feasible.

Because of these difference., it seems unlikely that fixed ACTs and SAWs will compete much for

applications. Because ACT devices are more complex to build and require large drive power, it is doubtful that

they will find much application as nonprogrammable bandpass filters: SAW devices do the job more simply and
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cheaply. Programmable ACT devices, however, probably will compete with SAW devices for reasons of

versatility and cost.

4.2.4 Digital Signal Processors

Since signals in the real world are analog, digital signal processors require analog-to-digital (A/D)

converters. However, ACT devices require no A/D converters since it is done naturally by the sweeping SAW.

For high-speed signal processing, digital devices are usually quite costly in terms of money, speed, size, weight,

and power consumption. These disadvantages are often perceived to be outweighed by two big advantages;

namely, accuracy and programmability. Programmability is something that digital devices clearly have had over

analog devices and has been lacking in high-speed analog signal processing systems. The ACT device attempts

to reverse this deficiency. The power of ACT devices can be seen when signals undergo the processes of

multiplication and addition. A typical ACT filter can perform at the equivalent of 45 GFlops (floating point

operations) in the space required for one digital chip in a digital computer. This processing capability is over

50 times that of a Cray-2 supercomputer [28].

ACT devices need not necessarily compete with digital devices. Clearly, in the transversal filtering

mode they are superior, especially when the frequencies are over, say, 50 MHz. But many times, ACTs work

in concert with digital devices. ACTs can work at intermediate frequencies (IF) towards a final digital processing

stage for further processing.

4.2.5 Active Filters

ACT devices can also be compared with active filters. Active filters realize a desired filter response

by combining amplifiers with passive feedback elements such as resistors and capacitors. Moreover, active filters

can have gain, whereas passive filters cannot. The high end of the usable frequency range for active filters is

limited mainly by operational amplifier tezchnology, which can be several hundred megahertz or more of

bandwidth, thereby coinciding with SAWs and ACTs. Active filters, however, are mostly used below 1 MHz.
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They are invariably infinite impulse response (fIR) or feedback recursive filters versus the FIR technology found

in ACTs, SAWs, and CCDs. Therefore, with active circuits, designers must take special caution to prevent

instability, a problem not inherent in FIR structures. IIR filters also have nonlinear phase responses which

require multiple stages of active circuitry to alleviate. By contrast, ACT devices have precisely linear phase.

Practically speaking, for those frequencies where ACT and active filters coexist, transversal filters with ACT

can realize higher order filter responses in a smaller volume than active filters. If narrow bandwidths are desired

(below 1 MHz), than active filters become advantageous.

4.3 ACT PTF Specifications

The performance parameters of the ACT PTF used in this thesis are provided in Table 1. The device

is the commercially available ACT-202 enhanced performance PTF designed and developed by Electronic

Decisions Division of Comlinear Corporation [29]. Programmable devices have 127 taps while fixed transversal

filters have up to 2000 taps. Tap weight resolution for the ACT-202 is 6 bits: 5 bits for amplitu&k 4id one for

the sign. Devices with 8 bits of resolution are also available. Although the frequency range of the device is

listed as 160 MHz, the PTF supports only a 1-90 MHz bandwidth capability. This bandwidth is limited by the

tap spacing of 5.6 ns. It should also be noted that the absolute maximum input power of the device is +10 dBm;

therefore, sufficient input buffering is required so that the device is not overdriven and damaged.
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Table I ACT Programmable Transversal Filter (ACT202) specifications.

Tap characteristics Digital input
Number of taps 127 Compatlty IBM1PC parallel port
Tap weighting 6 bits Programming time 55 Isecftap
Tap spacing 5.6 nsec
Tap Uniformity tl dB Temperature range

Operating (case) 0-500C
RF Performance a Storage 0-70*C

Insertion loss 0 dB
Dynamic range b Power

Spurious-free Input power supplies
2nd-order limited 35 dB +12 V supply tolerance 5%
3rd-order limited 45 dB -5 V supply tolerance 5%

Input 60 dB +12 V supply current 500 mA (typical)
-5 V supply current 200 mA o tpical

Delay line characteistics Power dissipation 7 watts (typical)
Frequency range 1-160 MHz
Sampling rate 358 MHz Physical characterstics
Delay range Size

Minimum delay 3 nsec (typical) Length 8"
Maxdmum delay 708 nsec (typical) Width 5"

Height 1"
RF Inputloutput Weight 1.6 lb

Input levelc -5 dBmd
Absolute maximum input +10 dBm
VO impedance 50 ohms
SAW spunous output level -40 dB

a Measured with taps set for 45 MHz hanning-weighted filter
b Measured with 150 MHz noise bandwidth
c at 1 dB compression
d Optimal input level depends on tap setting
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V. Hardware Experimental Configuration, Tests, and Results

This chapter describes the experimental set-up implemented in this thesis, including an explanation for

the particularly chosen configuration. This is followed by details of the testing procedure and the results obtained

from the tests. Finally, an analysis is provided of the results and how they relate to what was expected from

theoretical derivations.

5.1 Configuration Options Described

It was initially desired to construct the interference rejection filter to implement the LMS adaptive

algorithm using only one ACT PTF, as seen in Figure 16. However, as indicated in Equation (49), to update

the PTF tap weights so that the gradient of the mean-square error is driven down the performance curve toward

the optimal Wiener solution, the value of the delayed input sample signal at each tap is required. With the ACT

PTF construction, this is not possible because the only interface to the ACT PTF is via an RF input signal port,

an RF output signal port (which is the summation of all of the weighted and delayed input samples), and the

25-pin parallel RS-232 port which can only be used to load initial and updated tap values. Hence,

implementation of the interference rejection subsystem with the conventional LMS adaptive algorithm is not

possible using only one ACT PTF. However, an adaptive interference canceller could be constructed using only

one ACT PTF if the linear random search (LRS) algorithm is used. As discussed in Chapter 3, the convergence

time for this algorithm is much longer than that of an adaptive canceler using the LMS algorithm.

Two possibilities will be described for a solution using a pair of ACT PTFs. One of these solutions,

called the "burst-processing" technique, was described in [8]. However, the signal samples in the burst-

processing system are shifted at a rate N times the input sampling rate in order to facilitate the update of all the

weights by a single multiplier, whereas with the conventional LMS adaptive system, the signal samples are

shifted at a rate equal to the input sampling rate. For the input sampling rate of the ACT PTF, this would require

a (127 taps X 356 MHz =) 45.2 GHz system bandwidth. Hence, it would be impossible to update the tap

weights at each successive input sample. Also, the two devices must be precisely timed.
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Figure 16 Originally desired AMS subsystem using only one ACT PFF.

Another possibility of implementing an adaptive interference rejection filter with two devices is as

illustrated in Figure 17 [29]. PTFl performs an autocorrelation of the signal plus noise which is followed by

the taking the Fourier transform of this signal to determine the power spectral density (PSD). With this

procedure the frequency component of the strongest signal is determined and the information forwarded to the

second PTF which develops the notch. As descibed here, this adaptive interference rejection system does not

actually implement an adap, ive algorithm, but is a transform-domain processor similar to that described by

Ketchum and Proakis in [5]. This technique may seem simpler than the system which employs an adaptive

algorithm; however, it exhibits stability problems. Also, it is not clear how to program the PTFs for multiple

or variable (non-stationary) jamming signals.

5.2 Chosen Experimental Configuration

The configuration illustrated in Figures 18 and 19 is used for this thesis. This configuration implements

a "modified" LMS algorithm. An ACT PTF establishes the notch (as desired) while another ACT PTF device,

which is implemented as a selectable delay line (SDL), updates the tap weights one tap at a time by adjusting

each tap in succession while setting the remaining taps to zero. This "modified" LMS algorithm is based on the
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FIgure 17 Block diagram of a transform domain interference suppression technique.

following constraints:

(1) It assumes the statistical properties of the system input remain constant over the adaptation time

interval;

(2) It does not update the taps every kth sample (which is physically impossible because it implies a

500 ns update time), but rather in larger groupings (longer update intervals);

(3) It does not calculate the quantity 744jr for every kth sample but uses time-averages instead; hence

w,(k + 1) = w,(k) + pe(k)x(k - WA1) (54)

where the overbar indicates a time-averaging of the cross-correlation between the error signal and the weighted

sample values of the taps. This averaging is accomplished by feeding the output error signal through a LPF prior

to A/D conversion for input to the software where the LMS algorithm is computed (see Figure 20).

Once the error signal is input into W.A.V.E. it is processed according to the description of the

"modified" LMS. The required coding within W.A.V.E. is provided in Figure 21. Since each of the tap weights
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Figure 19 Configuration of the adaptive interference suppression (AIS) subsystem.

are updated individually, exact timing must be maintained between the PTF and the SDL with respect to the

RF accessory module. This alignment is verified first. Next, key system parameters are initialized. The

STARTrAP and ENDTAP variables can use any quantity of consecutive tap weights; 100 taps were typically

used. To ensure a de-correlation of the DS/SS signal entering the PTF and SDL with that of the direct path,

the delay, AT, is the duration of one chip in the PN sequence; 50 ns for the 20 Mcps case typically used for

the experiments. Hence, by turning off the first 9 taps (5.6 ns x 9 = 50.4 ns) in the PTF and SDL (as a

minimum), de-correlation is assured, since a PN sequence shifted by one or more chips with respect to itself

is uncorrelated.
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Figure 20 Internal operation of the Adaptive RF Accessory Module.

5.3 Test Factor Variations

The following factors, along with their corresponding parameters, were varied for the test cases

conducted in this experimentation:

1 Jammer-to-signal ratios (JSRsXdB): 10; 20; 30.

This parameter will test the adaptive systems ability to notch out jammers of varying relative strength to the DS

signal.

0 Jammer offset from carrier (single jammer) (degrees): 0; 10; 45; 80.

This parameter will test the adaptive systems ability to notch jammers at different locations within the DS/SS's

PSD, especially at the critical carrier frequency. To clarify, zero degrees offset is located at the carrier or center

frequency and 90 degrees offset is at the null of the mainlobe of the BPSK waveform.

0 Jammer offset (dual jammers) (degrees): 0 & 45 ; -45 & 45.

Since there is much interest in determining the ability of an AlS suppression system in handling multiple jammer

environments, this parameter is an extension of the single-jammer case. Also, a need exists to determine how

the system handles jammers of varying strength.
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MW CHECK TIME ALIGNMENT OF PIP AND SDI. TAPS WW6
# TAP28 -169nas -BEGIN[NING
PE28 /00 dup27,0)1I (31] I dup100,0)
p028 /01 dup(27,0)1I[-31] I dup(100.0)

0 TAP 78 - 449 as - MIDDLE
pf28 /00 dup(77,0) 1 [-3 1] I dup(50.0)
pf28 /01 &*p77,0)1I[-31] 1 dup(50,0)

# TAP 127 - 723 as - END
p121 /00 dup(126,0)1[ -31] 1 (0]
pf28 /01 dup(126.0)1I -31] 110oj

#68 INITIALIEM PARAMETERS ON0
ADGAIN =10 #/ Gain in the AID converter
STARTTAP = 28 0/ Varies number of taps used; (AT)
ENDTAP = 127 V/ Specify last tap used in range
STEPSIZE 0.9 #/ Convergence parameter
LEAKAGE =.9995 #/ Expected tap weight leakaige
WAITTIME = A N/ Tune for LPW to settle (seconds)

#0 CHECK MULTIPLIER POWER
adrecv(0,ADGAIN.YOE,100) 8/Reading from A/D converter
YOE 0/ Power levels of100 samples

PFIP.TAPS = dup(128,0) #/ Initial PTF taps
pf28/100 PTF..TAPS b/Intial PFP load
p128 /01 PTK.TAPS 8/Initial SDL load

#COUNT = 0
*while COUNT >= 0 8/Intializ looping of iterations

#0 ADAPTIVE LOOP
TAP = STARTTAP #/ Start with first: top
p128 /01 dup(128,0) #/ Clear SDL
pf28 /0131, TAP #/ SDL -lst tap on
wait WAIT-TIME #/ Wait for LPP to settle out
adrecv(0,ADGAIN,YOEl00) #/ Read All) converter
RAW-ERROR = [mean(YOE)] #/ Estimate error signal
for TAP = STARTTAP+l, ENDTAP, I #/ Loop throug the rest of the taps

p128 /010, TAP-I #/ Turn previous SDL tap off
pf28 10131, TAP #/ SDL - Itopon
wait WAIrTJIME #/ Wait for LPW to settle out
adrecv(0.ADGAIN,YOE,l00) #/ Read AID converter
RAW-ERROR = RAW-.ERROR I (mean(YOE)] #/ Estimate error signal

next TAP #/ End of loop
ERROR = RAW-ERROR - mean(RAWERAROR) #/ Subtract DC offset in error vector
UPDATE = -ERROR/2000 #/ Normalize update
PTF-TAPS = LEAKAGE*PTF..TAPS +
dup(STARrrAP-1,0)t31ISTEPSIE*UPDATEI(0I

#/ Calculate new FTP tap weights
p128 /00 PFP.TAPS #/ Load new VPT tap weights
#COUNT = COUNT + I
OCOUNT

#endwhile

Flgwm 21 W.A.V.E. coding to perform "Modified" LMS algoribin.
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* Carrier frequency (MHz): 45, 135.

The 45 MHz carrier is optimal in terms of the maximal allowable bandwidth the ACT device, so it will be

chosen as the carrier frequency of the DS/SS signal. (The 45 MHz signal is in the center of the dc-90 MHz

region of the ACT device which is limited by the 5.6 ns tap spacing). The 135 MHz carrier, which is in the

ACT's second Nyquist interval (as a result of aliasing), could also be implemented so as to increase the

intermediate frequencies for which the system is operated.

* Chip sequence data rate, R, (Mcps): 10; 20.

Because of the intertap delays in the ACT PTF construction, these two chip sequence data rates will be

examined in conjunction with the number of taps chosen.

a PN Sequence length: R4(4,1), R13(13,12,11,5,2,1).

These two PN sequence lengths will help determine the effects of having finite length repeated sequences and

their relationship to the adaptive system's ability to predict them. This should affect the amount of the undesired

notching of the DS/SS signal along with the notching of the narrowband jammers.

* Processing gain, Gp (dB): 20; 30; 40.

Although not of relevance to the SNR improvement factor tests, this parameter is, of course, pertinent to the

P, measurements.

m PTF tap structure: One-sided predictive filter; two-sided interpolating filter. This parameter should

validate the superiority of the two-sided filter structure when the jammer is close (± 17 degrees) to the carrier

frequency. Aside from these offsets, the two structures alternate as to which is better in terms of expected SNR

improvement factor as indicated in Figure 42.

* Number of taps, L: 127 (100 actually used); 15; 7.

Because it is critical that the intertap delay be approximately equal to the chip duration so that the DS/SS signal

is approximately uncorrelated at different taps (such that the AIS cannot predict and, henceforth, notch out the

desired signal), the numbei of taps will be adjusted in conjunction to the chip rate. Below is shown the taps

which will be used with the number of taps selected:

5-8



7 ta-,-: 1,22,43,64,85,106,127

15 taps: 1,10,19,28,37,46,55,64,73,82,91,100,109,118,127

U Convergence parameter, p: vary according to signal level.

The value of u must be < 0. 1 of signal power. This parameter affects the speed of convergence as well as the

accuracy (the closer it can achieve the optimal Wiener solution). Unfortunately, these two characteristics must

be traded off.

5.4 Desired Measurements and Data Collection

The following measurements and data were gathered during the experimentation:

N JSR before (or input to) the adaptive interference suppression (AIS) subsystem along with a plot

of the corresponding spectrum (see point (a) in Figure 18). This is done by calculating the power of the jammer

and the power of the DS/SS signal at the output of the respective generators and then recalculating the levels

output from any mixers, splitters, etc. leading up to the AIS subsystem.

a JSR after the AIS subsystem adaptation or at its final (convergent) setting of the tap weights along

with the corresponding signal spectra (point (b) in Figure 18). The ratio of the JSR after -Qdtptation to that before

entering the AIS subsystem is the SNR improvement factor, G,.

E Plot of the frequency-domain response and time-domain response of the filter at its convergent

values. This is accomplished by disconnecting the ACT PTF from the rest of the system with the tap weights

set at the convergent solution and inputting a signal from network analyzer/S-parameter test set (point (c) in

Figure 18).

N Measurement of the squared-error signal after each iteration within each test case. These values

will be used to derive learning curves for each case. These values were obtained in the W.A.V.E software

program as seen in Figure 19.
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w Convergence time in terms of the total time it takes the ,AS subsystem to reach its convergent value

and in terms of the time and number of iterations of the adaptive algorithm. This measurement was also

obtained in WAV.E.

* Calculation of the SNR improvement factor, G, . This value is determined by examining the amount

the AIS notches the jammers from the before and after spectral plots.

E Bandwidth of the resulting notch. This width is a function of the number of taps implemented in

the PTF (and the total time delay of the PTF), i.e. more taps used yields a narrower notch---a desired effect so

as not to overly disrupt the reception of the desired signal. This value is obtained from the ACT PTF frequency

response curves for those cases in which it was generated.

5.5 SNR Improvement Tests

The SNR improvement factors can be described as the ratio of the SNR with the adaptive system in

place to the SNR with no adaptive system. The above analysis is especially straightforward because it

corresponds to SNR at the output of the suppression filter rather than the SNR at the output of the final

detection filter. Table 2 lists the test cases that were run in the experimentation.

Case 1 involves a tone jammer at the carrier with a JSR of 10 dB, which equates to a peak signal 27

dB above the peak value of the DS/SS signal. The power level of the sinusoid can be found directly from the

spectral plot as seen in Figure 22; the power of the DS/SS signal can calculated from the same plot as follows:

PDsss(dBm) = Peak value(dBm) + 10 log ResoiuPoBW (55)
ReolutionB

In all the cases, the JSR is adjusted (via the HP 355 C/D attenuators) by reducing the DS/SS power level and

keeping the tone jammer power constant. This makes it possible to determine the amount of SNR improvement

obtained in the experimentation from the spectral plots taken after the adaptations. This SNR improvement is

equal to the amount of the notching of the tone jamming signal. From Figure 22, it is evident that the adaptive
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Table 2 Test Cases Run in the Experimentation.

Predictive filters 100 tapsi R13 code lengths 20 acps; 45 M~z carrier,

single jer.

&0 - 0

Case 1: J.7R a 10 dB
Came 2s JBR - 20 dB
Came 3: JBR - 30 dB

J.R = 30 dB

Case 4: 8• a 100
Camse 5: 8W - 450
Case 6: 8& - 800

JSR - 20 dB

Case 7: 8W - -450

Dual Jammers

Came 8: &0 - 00 (JBRt 17 8B) & 450 (JOR: 27 5B)

Came 9: 80 - -450(J"R: 17 dB) a 450 (JOR: 27 5B)

Came 10: 8W = -45°(JBR: 27 dB) & 450 (JOR: 17 d5)

Came 11: Came 10 with different convergence rate

R5(5.4,2.1) PR Sequence

Case 12: JOR - 20 dB; 8W a 0

R13(13,12,11,5,2.1) with 15 oonSe•tive taps

Came 13: JBR n 20 dB; 80 - 0

Marrowband 7N amermrs:

Case 14: 300 kHz deviation YM Janmer

Came 15: 10 k~z deviation FN jaser

interference rejection system notched the tone jammer by 38 dB. This was accomplished within 13 iterations

as seen from the learning curve derived for this case in Figure 27.

Each iteration for the cases using 100 taps took approximately 35 seconds to complete; the iteration

times for 15 taps and 7 taps would be about 5.25 seconds and 2.45 seconds respectively. This relatively long
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RL 0. 80 dO.

10. dB/I I

SPAN - - - - - - - - -

BO.8 01MHz

CfL~. E1H -N -W4T -FR -

,RB 300 kHz '1)8 10.8 kHz ST 00.00 ssec

AL 0.00 dO.
RTTE B A - - -

180. dO/ 11)"-

REFE ENCE LEVEL___
0.00 dO. - __

C;ENT .

*RB 360 kHz '1)010.0 kHz ST 8.080 'sec

F~gur 22 Case 1 (10 dB JSR., &o =0) before and after spectra The notch is 38 dB.
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period of time for an iteration can be attributed to the following conditions:

(1) the use of 100 taps greatly surpassed the number of taps used in other experimental systems

investigated (5-11];

(2) because of the need to use two ACT PTFs, and the way in which the taps are updated

(sequentially), the time is, henceforth, increased;

(3) the wait-time for the LPF to settle was conservatively set 1-2 orders of magnitude longer than

required (0.1 s as seen in W.A.VE. coding of Figure 21);

(4) W.A.V.E is an interpretive software package; the use ef a dedicated digital signal processor to

perform the LMS would decrease the time greatly;

(5) the convergence parameter was not set at the optimal value for every test case; the requirement to

do so would have added excessive difficulty within the time available to conduct the experiments.

Figure 23 contains the frequency and impulse responses of the ACT PTF at convergence. Notice the

approximately 38 dB of notch at 45 MHz. Also, the 3-dB bandwidth of the notch is approximately 400 kHz,

bettering the 1 MHz goal, and the frequency response is flat outside the vicinity of the notch. This explains why

the DS/SS signal is minimally affected during the adaptive process, thereby maintaining transmission integrity.

Case 2 is depicted in Figure 24. The only difference in this case from Case I is that the JSR is

increased to 20 dB such that the peak of the jammer is 37 dB above the DS/SS signal. The adaptive system

again notched the signal sufficiently, about 43 dB. In Case 3 (Figure 25), the JSR is increased to 30 dB (peak

value of jammer is 47 dB above the DS/SS signal). The amount of notch or SNR improvement can be seen

to be about 56 dB. As was also demonstrated in Cases 1 and 2, there is minimal degradation to the desired

spread spectrum signal. The frequency response of the ACT PTF at convergence is illustraed in Figure 26,

where 55+ dB of notching is evident. The 3-dB notch bandwidth is approximately 500 kHz.

The learning curves for Cases 1-3 are given in Figure 27. Other than the spurious phenomena with Case

I at iteration 2, the curves are strikingly similar. It will be shown for the upcoming cases that their learning

curves are, likewise, consistent with those found in Figure 27. This condition resulted because the jamming
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CHI S 2 1  log MAC 10 dB/ REF -58.83 d8 L..-47.257 dB

0AFREMUENCY RESRONSE OF ACr PTF - CASE 45. 12 000 MHz

CHI CENTER 45. 000 000 MHz SPAN 10. 000 000 MHz

CH2 S 2 1  Re 100 mU/ REF 0 U 1 170. 87 mU

____~~Is _ ___1.8 rim

CHZ START-iCO is TP90n

Fiur 23 Freuec adi fim le repne for. Cas.1

"5- 1 4
CH2 START-100 m STOP 900 n

S23 F'requency and implse responses for Case 1.
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RL -18.88 dBm

REFEIENCEILEVEL--

I - ,

CENT, -T 4I5 THT
RB 300 kHz aYB 18.0 kHz ST 08.88 lsec

RL -10.08 dBm
ATTE• 10 c

t1.0 dS/1II

REFE ENCE LEVEL
-1i. a d8B

NR .0 MHz -- SPAN 0. Hz'
'RB 308 kHz U8 10.8 kHz ST 88.808 sec

Fgur 24 Before and after spectra for Case 2 (20 dB JSR, 8w = 0). The notch is 43 dB.
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AL -10.00 d~m
ATTE 198B
10.0 dB/ I U

REFE ENCEILEVEL
-16. 0 dBI

~ER M5.z flR
*RB 399 kHz sUB 10.0 kHz ST 89.99 msec

RI -19.99 dBm
ATTE 19 B
10.9 dO' IV I

REFE ENCEILEVEd
-19. 9 dOi

@RB 396 kHz *VB 19.9 kHz ST 89.99 masc

Figur 25 Caue 3 (30 dB JSR, 8w = 0) before and after adaptation spectma T"he resulting notch is 56 dB.
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CHI 52 log MAG 10 dB/ REF -6.626 dB 1i- 6 S. 0 23 d1

MFREQUENC. RES! ONSE OF ACr PTF ,5. 0100 1 MNz

Mn

CHI CENTER 45.000 501 MHz SPAN 20. 000 000 MHz

Figur 26 The frequency response of the ACT PTF after adaptation for Case 3.

signal was chosen to be constant at the start of the adaptive process for each case, even though the JSR's were

different.

Starting with Case 4 the location of the jamming tone is shifted within the spead spectum bandwidth.

While maintaining the same 30 dB JSR as in Case 3, the jammer is moved to an offset of 10* from the cairer,

or to 47.222 MHL However, as seen from Figure 28, the jammer is nonetheless notched by 55 dB. Even when

the jamming tone is moved to an offset of 450 from the carrier (55 MHz), as demonstrated with Case 5, the

jammer is, again, notched by 55 dB (Figure 28). This serves to show that the adaptive interference system

counters power levels regardless of the frequency location within the spread spectrum bandwidth. This point will

be reinforced in later cases.
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{Learning Curves for Cases 1-31

I50

0
IIteraton 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M Case i V1824 7 51.39188.21 55.12133.31l23.93 12.18l 6.92 15.52 14.13 2.5 11.78 11.76 1 I
* Case 2 6724A02.9266.23 41.96127.85 16.71 10.8815.88 13.46 3.12 2.36 11.94 11.57 12.02 2.361

11 RNI

A Case 3 1 66.9 02.61,67.61141.73128.3311 16.6 11.69 i6.32 4.06O 2.71 1.51 11.59A1.74 11.97 1.2 3

L27 Leaing curves for Cases 13.

With Case 6, the tone is relocated to 62.778 MHz (or 800 offset). Still maintaining a 30 dB JSR, the

jammer is 57 dB abov. the DS/SS signal at this frequency. However, with this case a 56 dB notch is obtained

as viewed in Figure 30.

Learming curves for Cases 4-6 are shown in Figure 31. Again notice a consistent process of adaptation

even when the jamming signal is shifted with respect to the carrier.

With Case 7, the jammer is moved to the lower-frequency side of the DS/SS mainlobe (at a --45* offset

or 35 MHz). This case was run to demonstrate that the adaptive interference cancelling system counteracts the

jamming tone's power level regardless of frequency. Figure 32 shows Case 7 in which a 20 dB JSR is

encountered. The amount of notch or SNR improvement is 52 dB. Of interest is the spurious signal (obviously

a harmonic of the jamming signal) at approximately 70 MHz. This is a result of the squaring operation within
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RL -18.9 dOHe
RTTEi 10 B
10.0fl dB/O IU

REFE ENCE LEVEL A
"-tO. 1e dOi

CENTIRR S4 11 HzSPAN 08.18 MTHz
•RB 399 kHz #U8 19.9 kHz ST 8.89 asec

RL -19.99 dB,
ATTE 18 B9

10.0 d8/C I1

REFE IECE LEVEL
-10. 19 d~i

-CNE 50Mz M1Hz

R8 399 kHz ,U A1.8 kHz ST 08.99 -sec

Flp.'. 28 Before and after adaptation spectra for Case 4 (JSR =30 dB, 8o = 100). The rsuitmng notch is 55
dB.
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AL -10.00 dBe

SdB/C IV__
REFE ~ENCEjLVL
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Flgure29 Case 5spectr.JSR = 30dB, 8w= 450.Thcmresultng notch is 55dB.
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RL -18.88 dfa
IATTE• 108 C
18.81 dO/AIV

_EF NC _ - - - _ -
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-18. 8 d9O

Re 399 kHz "UB 18.96 kHz ST 89.89 msec

RL -1.B de - -

ORTTE 1 a'
18.9 dB/ IV -

REFE ENCE LEVEL
-19. 18 dO -

0 A

RB 399 kHz ,1)B 19.9 kHz ST 89.96 asec

F]igue 30 Case 6 with 30 dB JSR and 8w = 80. The jamme is notched 56 dB.
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Learning Curves for Cases 4-61
200

o"100

S50

0 , , IF --4= _ -

i teraton 1 2 3 4 5 6 7 8 9 10 11 12 1 13 14 15 16
UICase 4 70.3406.7 7.05 42.75 23.9314.181 8.541 7.12 5.3714.5112.4812.07 12.46 11.69 1.79

I> Case 5 061.7 06.9 .3147. 1. 21.1115.3 9.64 4.93 2.68 2.21 2.31 1.49 1.73 1.94 1.71
A Case 6 453.05.993.0555.04 7.09 .1918. 10.9 6.751 4.7 4.01 3.84 3.68 2.93 3.03 2.24

Figure 31 Learning curves for Cases 4-6.

the spectrum analyzer since the analyzer displays power signals. Making use of the trigonometric identity,

cos20 = W( 1 - cos20), the double-frequency harmonic becomes evident. Two trials were carried out for Case

7, and their learning curves are provided in Figure 33.

In Cases 8-11 a critical capability of the adaptive interference system is examined: that of notching

jammers in a multiple-jammer scenario. Hardware restrictions, however, limit the number of jammers,

practically, to two. Case 8 involved a tone at the carrier with a JSR of 17 dB and a stronger jammer (JSR of

27 dB) located at 55 MHz (45° offset). When two jammers of unequal power were input to the system, it took

substantially longer to notch them relative to a single jammer at either location. The W.A.V.E. algorithm was

setup to perform looping after each iteration because of the larger number of iterations it took to notch the

jammers. Figure 34 (which comprises four separate plots shows that after 10 iterations, the tone at 55 MHz was
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RL -18.88 dB=

RTTE 10 B
10.0 d/[ IV

REFE ENCE LEVEL
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Figum 32 Case 7 before and after spectra JSR = 20 dB, o= -45*. The tone is noched by 52 dB.
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Learning Curves for Case 7
250

S200
W ,

~150

~100 f

c 50

0 1 -Q.
Iteraion I 1 2 4 1 5 1 6 7 8 1 9 10 11 1 12 13 14 15
8U Case 7(1) 180.9 71.13138.;9 25.12111.31 6.3 4.92 3.68 3.06 2.26 2.49 1.85 1.77 2.54 1.84j

I0 Case 7(2) 91.4 98.76!54.09]30.25117.47 9.12 3.47 3.04 2.14 1.96 1.49

Figure 33 Learning curves for two trials of Case 7.

notched by 39 dB and the tone at the carrier by 20 dB. After 20 iterations, the notch levels are 45 dB and 25

dB, respectively. Finally, after 30 iterations, the notches are much the same: 45 dB and 27 dB. Clearly, it takes

longer to notch two jammers; furthermore, the amount of the notching is not as much as with the single jammer

cases.

Case 9 considers jammers on either side of the carrier: the same tone at 55 MHz (JSR = 27 dB), and

a weaker tone at 35 MHz (JSR = 17 dB). Although no spectral plots were generated for this case, from the

learning curves generated in Figure 37 one can conclude that similar results should arise with this case as with

Case 8.

In Case 10, the jamming tones of Case 9 are reversed. This case is the most telling as to whether the

adaptive interference rejection system responds by notching jammers based on their power or based on their
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Figure 34 Case 8 with two jammers (JSR 17 dB @ 8= 0; JSR 27 dB @ &0 = 45°), (a) before adaptazion,
(b) after 10 iterations.
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Figur 34 (cont'd) Case 8 (c) afte 20 iterations. (d) after 30 iteations.
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Figtu 3S Case l0 with two jammers (JSR = 27 dB @ 35 MHz; JSR = 17 dB 55 MHz) (a) before
adaptation, (b) after 10 iterations.
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Figure 35 (cont'd) Case 10 (c) after 100 iterations, (d) after 110 iterations.
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frequency. Two separate trials were performed with Case 10. The results contained in the learning curves of

Figure 37 were from the non-looping case, where only 10 iterations were conducted. Again, the 70 MHz

harmonic within the first side-band is present in Case 7. From the results, one can conclude that, again, power

levels are the subject of interest, not frequencies. The before and after spectra in Figure 35 were derived from

the looping case. From the plots, one finds that after 10 iterations, the stronger powered signal is all but

completely removed (notched by 52 dB), while the weaker signal is only reduced by about 3 dB. This is because

of the larger gradient value of the stronger jamming tone input into the AIS system. Therefore, the adaptive

system responds proportionally to these stronger signals to minimize the mean-square error.

Figure 35(c) is a plot of Case 10 after 100 iterations were conducted. It is now seen that the tone at

55 MHz is rejected by 26 dB. After 110 iterations (Figure 35(d)), the notch is 29 dB. It is apparent, then, that

because the weaker tone is 10 dB less than the stronger tone, it took approximately 10 times longer to notch

(100 iterations versus 10 iterations). Even when the AIS system had notched the stronger jamming signal at 35

MHz below the level of the weaker jammer at 55 MHz, it continued to work on the stronger jammer because

its input signal strength to the MiS system is still larger then the weaker jammers' input. It only appears that

adaptive system notched the stronger jammer completely before notching the weaker signal. It was simply the

result of the relative time the system took to notch the 10-dB weaker signal. Figure 36 illustrates the frequency

response of the ACT PTF aftx 110 iterations. The notches agree precisely with those found in the spectral plots

of Figure 35. The 3-dB bandwidths in this case appear to be approximately I MHz. In addition, the rest of the

spectrum is relatively free from obstruction. As already alluded to, Figure 37 contains the learning curves for

Case 8-10. Again, consistency in the level of the relative mean-square error verses iteration is demonstrated.

Case I I is a repeat of Case 10 except that a faster convergence parameter was selected to perform the

iterations. Although no spectral plots were obtained, the learning curves in Figure 38 clearly show the effect of

more finely tuning this parameter to enable a faster convergence.

Case 12 repeats Case 2 using a different length PN sequence in the DS/SS signal. The R13 (8095 bits

long) sequence was replaced with an R5 (31 bits long) to ascertain whether shorter-length repeating PN
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Learning Curves for Cases 8-101
100

80----

0 ,

Iteraon 1 2 3 4 5 6 7 I 9 110 11 12 13 14 151
ill Case 8 74.04162.44153.02 45.09 37.81131.68 27.88 23.49119.961,.65114.73j 12.5 10.54 9.59 87.08
SCase 9 73.64 61.9 i52.1344.36 38 131.98 27.4 23.35119.94 17.68 1
A Case 10 77.09162.36 49.72!41.35 33.91 127.65123.24.19.61 15.48,14.74

Figure 37 Learning curves for Cases 8-10.

sequences could be predicted by tiie adaptive filter any easier than the longer code. From the plots in Figure

39, the answer is no. The notch produced in Case 12 was 42 dB compared with 43 dB in Case 2. One can also

see from a plot of the learning curves (Figure 40) that the two practically overlay each other.

Case 13 examines the effect of using fewer taps in the PTF's. Case 13 repeats Case 2 except the

number of taps was reduced from 100 to 15 (taps 113 to 127). It was expected that the adaptive process would

be much slower, which the learning curves in Figure 41 confirm. It is concluded that even though the time for

an iteration with 15 taps is significantly less (5.25 seconds versus 35 seconds), the relatively accomplishment

of each iteration towards rejecting the tone interferer was correspondingly less successful. It is presumed from

extending out the error signals resulting from each iteration with the 15-tap case, that the 100-tap adaptive filter
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Learning Curves for Cases 10 & 11
100

601 V - - -- - - - -- - - 1
S40--

S20

Iteraion 1 12 3 4 5 6 7 8 9 10 11 12 13 14 15
•Cs10 177.09 62.36 49.72 41.35 33.91 27.65 23.24 19.61 15.4814.74

*Case 11 77.18 47.54 30.27 20.96 13.99 10.01 7.36 7.05 6.34 15.97 5.7 5.76 5.39 5.84 1.9

Figure 38 Learning curves comparing Cases 10 & 11 with two different convergence parameters.

would be faster (overall) than the 15-tap comparable system. Additionally, a narrower notch bandwidth and a

deeper null can be achieved by using more taps (with the same tap spacing).

Table 3 is a summary of the values representing the learning curves for each case. The value indicated

at each iteration is the RMS value of 100 samples of the squared-error signal output from the four-quadrant

multiplier, one sample for each of the 100 taps. To explain what relative mean-square error denotes, it is first

pointed out that the signal output from the summer (at J5) in Figure 20 is the error signal (eventually the

remaining desired signal), while the output from the 4-quadrant multiplier is the squared-error. The A/D

converter reads the power signal output from the 4-quadrant multiplier, then quantizes this squared-error signal

using 12 bits (4096 levels or ± 2048 levels) with a full-scale voltage level of ± 10 V. Obtaining the precise

error signal for these learning curves must also take into consideration the 10 dB of gain from the A/D
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Learning Curves for Cases 2 & 121
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Figure 40 Learning curves comparing Cases 2 & 12.

converter. Hence, for simplicity, relative values determined within W.A.V.E. were used to represent the mean-

square-errors as depicted .a the learning curves. Furthermore, it is seen from the coding in Figure 21 that the

squared-error signal is normalized by subtracting out the mean value; a near zero relative mean-square error

could not result otherwise since the desired DS/SS signal remains after the adaptation.

Cases 14 and 15 involved an attempt for the adaptive interference suppression system to counter

narrowband FM jammers. In Case 14, a 10 kHz bandwidth FM signal centered at 48 MHz was notched

completely (45 dB) by the AIS system. This is not surprising considering the the 3-dB bandwidth of the notches

created by the ACT PTF in the sinusoidal jamming cases varied from 300 kHz to about 1 MHz. However, in

Case 15 a 300 kHz bandwidth signal was generated at the carrier. Figure 42 reveals that after 10 iterations the

PTF had created a notch that did not completely eliminate the narrowband jammer. Since no further iterations
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Learning Curves for Cases 2 & 131
200
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Iteration 1 1 2 1 3 4 5 6 7 8 19 10
a Case 2 ý67.27 102.92 66.23 41.96 27.85 16.71 10.88 5.88 3.46 3.12
* Case 13 ý73.26 163 152.02 142.71 .J133.23 125.92 118.46 111.02 104.56 96.18

Figure 41 Comparison of learning curves for Case 2 & 13.

were carried out, it can only be presumed that the notch would have developed such that it would have

eventually elimated the jammer. Unfortunately, the power levels of the FM jammers were not recorded.

To compare the theoretical improvement factors of a comparable system model of [6] to that obtained

by experimentation, the following analysis is made. From Equation (28) in Chapter 3, when the jammer is

located at the carrier of the DS/SS signal, fIT = 0, and Equation (28) can be solved simply for G,. Applying

rHospital's rule, the terms sin (LflT)/sin(QT) reduce to L; therefore, the solution to Equation (28) can be

derived as
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2SL 2 S M (56)
J

S

Since JIS is usually much greater than one (not to mention the additional effect. that the number of taps provides

in Equation (56)),

= 4L ÷--LcO(57)
G. L

Therefore, one can see that the expected comparable SNR improvement should exceed the JSR by an amount

equal to the number of taps in the PTF. For example, if L = 100, it is seen that for a 30 dB JSR at the carrier,

5-37



we can expect to achieve approximately 50 dB of suppression (assuming the tap weight resolution of the PTF

would allow for such a notch depth). Also, from Equation (30), it is found that for the two-sided interpolating

filter structure at the carrier that

G2 = 1 + .4[2,V- I + 2N+ I)= + J(2N)
SS_ T (58)

= s(2N); where 2N = L -.

Essentially, the two filter structures yield equivalent results when the jammer is located at the carrier. Figure

43 is a plot of the theoretical SNR improvement expected for the two filter structures for L = 10 and frequency

offsets from the carrier up to 900.

Table 4 contains the results of applying Equation (28) to Cases 1-7 and compares the results to those

obtained through experimentation. The conclusion is that the system implemented in this thesis worked better

than the calculated results from the system model in [6]. The reason for this situation may reside in the fact

that this system does not conform rigidly to the framework for which Equations (28) and (30) were derived [6].

The differences in the systems can be summarized as follows:

(1) Their system utilized only one PTF in the conventional implementation of the LMS adaptive

interference canceler, and this at baseband; ours uses two PTF's with a "modified" LMS configuration at IF;

(2) Their system set the tap spacing of the PTF equal to both the chip duration of the PN sequence

and the sampling interval in order to assure a de-correlation of the PN sequence amoung the taps such that the

PTF could not predict the DS/SS signal; our system did not attempt to set the tap spacing equal to the chip

duration but simply introduced a shift of one chip for the signals entering the PTF and SDL with respect to the

direct path to obtain decorrelation.

(3) Their system was updated with each successive input signal sample; ours was updated after

receiving a large number of input samples because of the sequential method of updating the taps and because

of the high input sampling rate of the ACT PTF. Hence, in out system, the chip duration Tc ( = 50 ns) is not

equal to the sampling interval T, (= 1/358 MHz = 2.8 ns); therefore, their frequency offset as seen in Figure 42,
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which was equa , •£,, is not the same as our definition of the fequency offset. For example, in their

framework L. -0 represents a jammer located at the carrier frequency of the DS/SS sinal. In our case, a

jammer located at the carrier, using their framework, yields a C'T, = 14@ and a T = 0.79'.

30
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Figure 43 Theoretical SNR improvements for the two LMS PTF filter structures for an arbitrary filter length
and JSR when c;= =20 [6].

Table 4 Comparison of Predicted and Resulting SNR Impwveme Factors

Casel Case2 Case3 Case4 Case5 Cane6 Case7

G, according to 30 40 50 46.89 46.99 46.95 36.99
E q. (28)
(dM)
G, from 38 43 56 55 55 56 52
experiments
(dB)
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VI. Conclusions and Recommendations for Further Study

6.1 Conclusions

The adaptive interference suppression system tested in this research performed admirably in a number

of respects. First, the system was able to successfully notch single-tone jammers anywhere within the DS/SS

passband, including jammers located at the critical carrier frequency. The depth of the resulting notches was as

high as 56 dB. Second, in all cases, the achieved SNR improvement with the ACT adaptive interference system

in place exceeded what wins expected from the theoretical calculations of a similar LMS adaptive interference

suppression configuration. The 3-dB notch bandwidths obtained were as low as 300 kHz and never exceeded

approximately 1 MHz. These narrow notch bandwidths helped to spare the DS/SS signal from excessive

degradation. Finally, it was also determined from frequency response plots of the PTF after adaptation that

minimal degradation was inflicted upon the spread spectrum system outside the notch vicinity. Based on these

results, and from results obtained in [10], it is estimated that if the complete SS receiver were built and

probability of bit error measurements taken, that the results would have been close to that of a SS system where

no jamming were present and no adaptive interference system were in place.

It was also found that the number of iterations needed for convergence was remarkably low for a

system employing the LMS adaptive algorithm. For all single-jammer cases, converger.ce was met within 10-15

iterations. Dual jammer cases took somewhat longer, depending on the power levels of the jammers. The

number of iterations ranged from approximately 20 to 100. The main system performance factor that could have

used substantial improvement was the time per iteration (35 seconds for 100 taps). Chapter 5 contains a

discussion as to why this was so and how it could be improved. The ultimate solution was brought up in a

discussion with Dr Vigil from EDI, Inc. The long term solution is to build a dedicated ACT FT that

incorporated, on chip, the LMS algorithm. In this case, a parallel updating of the tap weights via only one ACT

PTF with the LMS algorithm built right onto the chip would provide superior results. Combined with the 8-bit

tap weight resolutions of the latest ACT technology, a highly versatile and successful adaptive interference

rejection subsystem is envisioned.
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6.2 Recommendations for Further Study

It is recommended that another adaptive algorithm, although more difficult to implement than the LMS,

be adopted such that adequate results can be obtained from using only one ACT P1F (or any other PTF-type).

A viable candidate algorithm is the random search algorithm.

Another possible research suggestion is to find some other device technology which could provide more

dynamic range or greater notch depths, i.e. fiber-optic PTFs [33]. These PTFs have already demonstrated 70+

dB of notch depth.

A more practical follow-on topic to this work would be to either build the spread spectrum receiver

(correlator) or use some spread spectrum modems in order to take probability of error (Pb) measurements for

the system tested in this research. This is in addition to the steps that should be taken to optimize the

convergence times as mentioned in Chapter 5. The system should be further tested against other jamming signals

such as swept tones, pulse tones, narrow-band Gaussian noise jammers, or combinations thereof.

The primary performance criteria for the Pb tests is the Pb verses Eb/No curves. The following curves

should be generated for comparison purposes:

(1) Theoretical BPSK;

(2) Adaptive system off (all weights set to "0" with no jammer);

(3) Adaptive system on (with no jammer);

(4) 10-dB JSR;

(5) 20-dB JSR;

(6) 30-dB JSR;

(7) Jammer on with no adaptive system (all three JSRs should cause a Pb of 0.5).

For Pb tests AWGN must be added to the input of the AIS system so that Eb IN. can be calculated and the

corresponding curves generated. It would also be necessary to add an attenuator to adjust Eb/IN by leaving the

noise constant and adjusting Eb. This is necessary in order to derive the Pb versus Eb IN. curves. Of course,
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it is necessary to coherently demodulate the spread spectrum signal to baseband (or to an IF frequency),

synchronously despread the recovered PN sequence with a correlator to extract the message sequence, and then

perform comparisons of received versus generated data to calculate Pb
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